# Idempotent generated algebras and Boolean powers of commutative rings

G. Bezhanishvili<sup>1</sup>, V. Marra<sup>2</sup>, P. J. Morandi<sup>1</sup>, and B. Olberding<sup>1</sup>

<sup>1</sup> Department of Mathematical Sciences New Mexico State University Las Cruces NM 88003-8001, USA {gbezhani,pmorandi,olberdin}@math.nmsu.edu <sup>2</sup> Dipartimento di Matematica Federigo Enriques Università degli Studi di Milano, Italy vincenzo.marra@unimi.it

# 1 Introduction

Boolean powers were introduced by Foster [5]. It was noticed by Jónsson in the review of [6], and further elaborated by Banaschewski and Nelson [1], that the Boolean power of an algebra A by a Boolean algebra B can be described as the algebra of continuous functions from the Stone space of B to A, where A has the discrete topology. It follows that a Boolean power of the group  $\mathbb{Z}$  is an  $\ell$ -group generated by its singular elements; that is, elements g > 0 satisfying  $h \wedge (g - h) = 0$  for all h with  $0 \leq h \leq g$ . Conrad [4] called such  $\ell$ -groups Specker  $\ell$ -groups because they arise naturally in the study of the Baer-Specker group—the product of countably many copies of  $\mathbb{Z}$ . Similarly, a Boolean power of the ring  $\mathbb{R}$  is an  $\mathbb{R}$ -algebra generated by its idempotents. In analogy with the  $\ell$ -group case, these algebras were termed Specker  $\mathbb{R}$ -algebras in [3].

As a common generalization of these two cases, for a commutative ring R, we introduce the notion of a *Specker R-algebra* and show that Specker *R*-algebras are Boolean powers of R. For an indecomposable ring R, this yields an equivalence between the category of Specker *R*-algebras and the category of Boolean algebras. Together with Stone duality this produces a dual equivalence between the category of Specker *R*-algebras and the category of Stone spaces.

## 2 Specker *R*-algebras and Boolean Powers of *R*

Throughout R will be a commutative ring with 1, and we assume that all algebras are commutative and all algebra homomorphisms are unital (that is, preserve 1). We denote the Boolean algebra of idempotents of a ring S by Id(S).

We call an *R*-algebra *S* idempotent generated if *S* is generated as an *R*-algebra by a set of idempotents. If the idempotents belong to some Boolean subalgebra *B* of Id(S), we say that *B* generates *S*.

We call a nonzero idempotent e of S faithful if for each  $a \in R$ , whenever ae = 0, then a = 0. Let B be a Boolean subalgebra of Id(S) that generates S. We say that B is a faithful generating algebra of idempotents of S if each nonzero  $e \in B$  is faithful.

**Definition 2.1.** We call an R-algebra S a Specker R-algebra if S is a commutative R-algebra that has a faithful generating algebra of idempotents.

To build Specker *R*-algebras from Boolean algebras we introduce a construction which has its roots in the work of Bergman [2] and Rota [7]. For a Boolean algebra B, let R[B] be the

N. Galatos, A. Kurz, C. Tsinakis (eds.), TACL 2013 (EPiC Series, vol. 25), pp. 31–34

quotient ring  $R[\{x_e : e \in B\}]/I_B$  of the polynomial ring over R in variables indexed by the elements of B modulo the ideal  $I_B$  generated by the following elements, as e, f range over B:

 $x_{e \wedge f} - x_e x_f, \ x_{e \vee f} - (x_e + x_f - x_e x_f), \ x_{\neg e} - (1 - x_e), \ x_0.$ 

Let  $y_e$  be the image of  $x_e$  in R[B]. Then R[B] is a Specker *R*-algebra with  $\{y_e : e \in B\}$  a faithful generating algebra of idempotents.

**Theorem 2.2.** Let S be a commutative R-algebra. The following are equivalent.

- 1. S is a Specker R-algebra.
- 2. S is isomorphic to R[B] for some Boolean algebra B.
- 3. S is isomorphic to a Boolean power of R.
- 4. There is a Boolean subalgebra B of Id(S) such that S is generated by B and every Boolean homomorphism  $B \to 2$  lifts to an R-algebra homomorphism  $S \to R$ .

Here **2** denotes the two-element Boolean algebra. As we have noted, if S = R[B] for some Boolean algebra B, then  $\{y_e : e \in B\}$  is a faithful generating algebra of idempotents of S. While it is not the unique faithful generating algebra, it is unique up to isomorphism:

**Theorem 2.3.** Let S be a Specker R-algebra. If B and C are both faithful generating algebras of idempotents of S, then B and C are isomorphic.

In general, the algebra Id(R[B]) is larger than  $\{y_e : e \in B\}$ , due to presence of nontrivial idempotents of R. In fact, Id(R[B]) is isomorphic to the coproduct of Id(R) and B. The situation simplifies when R is *indecomposable*; that is, when  $Id(R) = \{0, 1\}$ .

#### 3 Specker algebras over an indecomposable ring

**Lemma 3.1.** If R is indecomposable, then for each Boolean algebra B, we have  $Id(R[B]) = \{y_b : b \in B\}$  and Id(R[B]) is isomorphic to B.

**Theorem 3.2.** If R is indecomposable, then an idempotent generated commutative R-algebra S is a Specker R-algebra iff each nonzero idempotent in Id(S) is faithful. Consequently, if S is a Specker R-algebra, then Id(S) is the unique faithful generating algebra of idempotents of S.

The considerations of the previous section give rise to two functors  $\mathcal{I} : \mathbf{Sp}_R \to \mathbf{BA}$  and  $\mathcal{S} : \mathbf{BA} \to \mathbf{Sp}_R$ . The functor  $\mathcal{I}$  associates with each  $S \in \mathbf{Sp}_R$  the Boolean algebra  $\mathrm{Id}(S)$  of idempotents of S, and with each R-algebra homomorphism  $\alpha : S \to S'$  the restriction  $\mathcal{I}(\alpha) = \alpha|_{\mathrm{Id}(S)}$  of  $\alpha$  to  $\mathrm{Id}(S)$ . The functor  $\mathcal{S}$  associates with each  $B \in \mathbf{BA}$  the Specker R-algebra R[B], and with each Boolean homomorphism  $\sigma : B \to B'$  the induced R-algebra homomorphism  $\alpha : R[B] \to R[B']$  that sends each  $y_e$  to  $y_{\sigma(e)}$ .

**Lemma 3.3.** The functor S is left adjoint to the functor I.

**Theorem 3.4.** The functors  $\mathcal{I}$  and  $\mathcal{S}$  yield an equivalence of  $\mathbf{Sp}_R$  and  $\mathbf{BA}$  iff R is indecomposable.

...Boolean powers of commutative rings

Thus, when R is indecomposable, Theorem 3.4 and Stone duality yield a dual equivalence between  $\mathbf{Sp}_R$  and the category **Stone** of Stone spaces (zero-dimensional compact Hausdorff spaces).



The functors  $\mathcal{I}$  and  $\mathcal{S}$  compose with the functors of Stone duality to give functors between  $\mathbf{Sp}_R$  and  $\mathbf{Stone}$ . The resulting contravariant functor from  $\mathbf{Stone}$  to  $\mathbf{Sp}_R$  is the Boolean power functor  $(-)^* : \mathbf{Stone} \to \mathbf{Sp}_R$  that associates with each  $X \in \mathbf{Stone}$  the Boolean power  $X^* = C(X, R_{\text{disc}})$ , where  $C(X, R_{\text{disc}})$  is the *R*-algebra of continuous functions from *X* to the discrete space  $R_{\text{disc}}$ , and with each continuous map  $\varphi : X \to Y$  the *R*-algebra homomorphism  $\varphi^* : Y^* \to X^*$  given by  $\varphi(f) = f \circ \varphi$ . The functor  $(-)_* : \mathbf{Sp}_R \to \mathbf{Stone}$  sends the Specker *R*-algebra *S* to the Stone space of  $\mathrm{Id}(S)$  and associates with each *R*-algebra homomorphism  $S \to T$ , the continuous map from the Stone space of  $\mathrm{Id}(T)$  to the Stone space of  $\mathrm{Id}(S)$ .

We next show that for an indecomposable R, the functor  $(-)_* : \mathbf{Sp}_R \to \mathbf{Stone}$  has a natural interpretation, one that does not require reference to  $\mathrm{Id}(S)$ . Let S be a Specker R-algebra and let  $\mathrm{Hom}_R(S, R)$  be the set of R-algebra homomorphisms from S to R. We define a topology on  $\mathrm{Hom}_R(S, R)$  by declaring  $\{U_s : s \in S\}$  as a subbasis, where  $U_s = \{\alpha \in \mathrm{Hom}_R(S, R) : \alpha(s) = 0\}$ . We also recall that the Stone space of a Boolean algebra B can be described as the set  $\mathrm{Hom}(B, \mathbf{2})$  of Boolean homomorphisms from B to  $\mathbf{2}$ , topologized by the basis  $\{Z(e) : e \in B\}$ , where  $Z(e) = \{\sigma \in \mathrm{Hom}(B, \mathbf{2}) : \sigma(e) = 0\}$ .

**Proposition 3.5.** Let R be indecomposable and let S be a Specker R-algebra. Then  $\operatorname{Hom}_R(S, R)$  is homeomorphic to  $\operatorname{Hom}(\operatorname{Id}(S), 2)$ .

It follows that for an indecomposable R, the dual space  $\operatorname{Hom}_R(S, R)$  of a Specker R-algebra S is homeomorphic to the Stone space of  $\operatorname{Id}(S)$ . This allows us to describe the contravariant functor  $(-)_* : \operatorname{Sp}_R \to \operatorname{Stone}$  as follows. Associate with each  $S \in \operatorname{Sp}_R$  the Stone space  $S_* = \operatorname{Hom}_R(S, R)$ , and with each R-algebra homomorphism  $\alpha : S \to T$ , the continuous map  $\alpha_* : T_* \to S_*$  given by  $\alpha_*(\delta) = \delta \circ \alpha$  for each  $\delta \in T_* = \operatorname{Hom}_R(T, R)$ . Thus, we have a description of  $(-)_*$  that does not require passing to idempotents.

We conclude this section by giving a module-theoretic characterization of Specker R-algebras for an indecomposable R, which strengthens a result of Bergman [2, Cor. 3.5].

**Theorem 3.6.** Let R be indecomposable and let S be an idempotent generated commutative R-algebra. Then the following are equivalent.

- 1. S is a Specker R-algebra.
- 2. S is a free R-module.
- 3. S is a projective R-module.

### 4 Specker algebras over a domain

When R is an integral domain, Theorem 3.6 can be strengthened as follows.

**Proposition 4.1.** Let R be a domain and let S be an idempotent generated commutative R-algebra. Then S is a Specker R-algebra iff S is a torsion-free R-module.

We recall the well-known definition of a Baer ring and a weak Baer ring in the case of a commutative ring.

**Definition 4.2.** A commutative ring R is a *Baer ring* if the annihilator ideal of each subset of R is a principal ideal generated by an idempotent, and R is a *weak Baer ring* if the annihilator ideal of each element of R is a principal ideal generated by an idempotent.

**Theorem 4.3.** Let S be a Specker R-algebra. Then S is Baer iff S is weak Baer and Id(S) is a complete Boolean algebra.

**Corollary 4.4.** Let R be indecomposable and let S be a Specker R-algebra. Then S is Baer iff R is a domain and Id(S) is a complete Boolean algebra.

**Theorem 4.5.** If R is a domain and S is a Specker R-algebra, then  $S_*$  is homeomorphic to the space Min(S) of minimal prime ideals of S.

Let  $\mathbf{BSp}_R$  be the full subcategory of  $\mathbf{Sp}_R$  consisting of Baer Specker *R*-algebras, let  $\mathbf{cBA}$  be the full subcategory of **BA** consisting of complete Boolean algebras, and let **ED** be the full subcategory of **Stone** consisting of extremally disconnected spaces.

#### Theorem 4.6.

- 1. When R is a domain, the categories  $\mathbf{BSp}_R$  and  $\mathbf{cBA}$  are equivalent.
- 2. When R is a domain, the categories  $\mathbf{BSp}_{R}$  and  $\mathbf{ED}$  are dually equivalent.

Since injectives in **BA** are exactly the complete Boolean algebras, as an immediate consequence of Theorem 4.6, we obtain:

**Corollary 4.7.** When R is a domain, the injective objects in  $\mathbf{Sp}_R$  are the Baer Specker R-algebras.

### References

- B. Banaschewski and E. Nelson, Boolean powers as algebras of continuous functions, Dissertationes Math. (Rozprawy Mat.) 179 (1980), 51.
- [2] G. M. Bergman, Boolean rings of projection maps, J. London Math. Soc. 4 (1972), 593-598.
- [3] G. Bezhanishvili, P. J. Morandi, and B. Olberding, Bounded Archimedean l-algebras and Gelfand-Neumark-Stone duality, Theory and Applications of Categories, 2013, to appear.
- [4] P. Conrad, Epi-archimedean groups, Czechoslovak Math. J. 24 (99) (1974), 192–218.
- [5] A. L. Foster, Generalized "Boolean" theory of universal algebras. I. Subdirect sums and normal representation theorem, Math. Z. 58 (1953), 306–336.
- [6] \_\_\_\_\_, Functional completeness in the small. Algebraic structure theorems and identities, Math. Ann. 143 (1961), 29–58.
- [7] G.-C. Rota, The valuation ring of a distributive lattice, Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973), Dept. Math., Univ. Houston, Houston, Tex., 1973, pp. 574–628.