Idempotent generated algebras and Boolean powers of commutative rings

G. Bezhanishvili ${ }^{1}$, V. Marra ${ }^{2}$, P. J. Morandi ${ }^{1}$, and B. Olberding ${ }^{1}$
${ }^{1}$ Department of Mathematical Sciences New Mexico State University
Las Cruces NM 88003-8001, USA
\{gbezhani, pmorandi,olberdin\}@math.nmsu.edu
${ }_{2}$ Dipartimento di Matematica Federigo Enriques
Università degli Studi di Milano, Italy
vincenzo.marra@unimi.it

1 Introduction

Boolean powers were introduced by Foster [5]. It was noticed by Jónsson in the review of [6], and further elaborated by Banaschewski and Nelson [1], that the Boolean power of an algebra A by a Boolean algebra B can be described as the algebra of continuous functions from the Stone space of B to A, where A has the discrete topology. It follows that a Boolean power of the group \mathbb{Z} is an ℓ-group generated by its singular elements; that is, elements $g>0$ satisfying $h \wedge(g-h)=0$ for all h with $0 \leq h \leq g$. Conrad [4] called such ℓ-groups Specker ℓ-groups because they arise naturally in the study of the Baer-Specker group - the product of countably many copies of \mathbb{Z}. Similarly, a Boolean power of the ring \mathbb{R} is an \mathbb{R}-algebra generated by its idempotents. In analogy with the ℓ-group case, these algebras were termed Specker \mathbb{R}-algebras in 3].

As a common generalization of these two cases, for a commutative ring R, we introduce the notion of a Specker R-algebra and show that Specker R-algebras are Boolean powers of R. For an indecomposable ring R, this yields an equivalence between the category of Specker R-algebras and the category of Boolean algebras. Together with Stone duality this produces a dual equivalence between the category of Specker R-algebras and the category of Stone spaces.

2 Specker R-algebras and Boolean Powers of R

Throughout R will be a commutative ring with 1 , and we assume that all algebras are commutative and all algebra homomorphisms are unital (that is, preserve 1). We denote the Boolean algebra of idempotents of a ring S by $\operatorname{Id}(S)$.

We call an R-algebra S idempotent generated if S is generated as an R-algebra by a set of idempotents. If the idempotents belong to some Boolean subalgebra B of $\operatorname{Id}(S)$, we say that B generates S.

We call a nonzero idempotent e of S faithful if for each $a \in R$, whenever $a e=0$, then $a=0$. Let B be a Boolean subalgebra of $\operatorname{Id}(S)$ that generates S. We say that B is a faithful generating algebra of idempotents of S if each nonzero $e \in B$ is faithful.

Definition 2.1. We call an R-algebra S a Specker R-algebra if S is a commutative R-algebra that has a faithful generating algebra of idempotents.

To build Specker R-algebras from Boolean algebras we introduce a construction which has its roots in the work of Bergman [2] and Rota [7]. For a Boolean algebra B, let $R[B]$ be the
quotient ring $R\left[\left\{x_{e}: e \in B\right\}\right] / I_{B}$ of the polynomial ring over R in variables indexed by the elements of B modulo the ideal I_{B} generated by the following elements, as e, f range over B :

$$
x_{e \wedge f}-x_{e} x_{f}, \quad x_{e \vee f}-\left(x_{e}+x_{f}-x_{e} x_{f}\right), \quad x_{\neg e}-\left(1-x_{e}\right), \quad x_{0}
$$

Let y_{e} be the image of x_{e} in $R[B]$. Then $R[B]$ is a Specker R-algebra with $\left\{y_{e}: e \in B\right\}$ a faithful generating algebra of idempotents.

Theorem 2.2. Let S be a commutative R-algebra. The following are equivalent.

1. S is a Specker R-algebra.
2. S is isomorphic to $R[B]$ for some Boolean algebra B.
3. S is isomorphic to a Boolean power of R.
4. There is a Boolean subalgebra B of $\operatorname{Id}(S)$ such that S is generated by B and every Boolean homomorphism $B \rightarrow \mathbf{2}$ lifts to an R-algebra homomorphism $S \rightarrow R$.

Here 2 denotes the two-element Boolean algebra. As we have noted, if $S=R[B]$ for some Boolean algebra B, then $\left\{y_{e}: e \in B\right\}$ is a faithful generating algebra of idempotents of S. While it is not the unique faithful generating algebra, it is unique up to isomorphism:

Theorem 2.3. Let S be a Specker R-algebra. If B and C are both faithful generating algebras of idempotents of S, then B and C are isomorphic.

In general, the algebra $\operatorname{Id}(R[B])$ is larger than $\left\{y_{e}: e \in B\right\}$, due to presence of nontrivial idempotents of R. In fact, $\operatorname{Id}(R[B])$ is isomorphic to the coproduct of $\operatorname{Id}(R)$ and B. The situation simplifies when R is indecomposable; that is, when $\operatorname{Id}(R)=\{0,1\}$.

3 Specker algebras over an indecomposable ring

Lemma 3.1. If R is indecomposable, then for each Boolean algebra B, we have $\operatorname{Id}(R[B])=$ $\left\{y_{b}: b \in B\right\}$ and $\operatorname{Id}(R[B])$ is isomorphic to B.

Theorem 3.2. If R is indecomposable, then an idempotent generated commutative R-algebra S is a Specker R-algebra iff each nonzero idempotent in $\operatorname{Id}(S)$ is faithful. Consequently, if S is a Specker R-algebra, then $\operatorname{Id}(S)$ is the unique faithful generating algebra of idempotents of S.

The considerations of the previous section give rise to two functors $\mathcal{I}: \mathbf{S p}_{R} \rightarrow \mathbf{B A}$ and $\mathcal{S}: \mathbf{B A} \rightarrow \mathbf{S} \mathbf{p}_{R}$. The functor \mathcal{I} associates with each $S \in \mathbf{S p}_{R}$ the Boolean algebra $\operatorname{Id}(S)$ of idempotents of S, and with each R-algebra homomorphism $\alpha: S \rightarrow S^{\prime}$ the restriction $\mathcal{I}(\alpha)=\left.\alpha\right|_{\operatorname{Id}(S)}$ of α to $\operatorname{Id}(S)$. The functor \mathcal{S} associates with each $B \in \mathbf{B A}$ the Specker R-algebra $R[B]$, and with each Boolean homomorphism $\sigma: B \rightarrow B^{\prime}$ the induced R-algebra homomorphism $\alpha: R[B] \rightarrow R\left[B^{\prime}\right]$ that sends each y_{e} to $y_{\sigma(e)}$.

Lemma 3.3. The functor \mathcal{S} is left adjoint to the functor \mathcal{I}.
Theorem 3.4. The functors \mathcal{I} and \mathcal{S} yield an equivalence of $\mathbf{S p}_{R}$ and $\mathbf{B A}$ iff R is indecomposable.

Thus, when R is indecomposable, Theorem 3.4 and Stone duality yield a dual equivalence between $\mathbf{S p}_{R}$ and the category Stone of Stone spaces (zero-dimensional compact Hausdorff spaces).

The functors \mathcal{I} and \mathcal{S} compose with the functors of Stone duality to give functors between $\mathbf{S p}_{R}$ and Stone. The resulting contravariant functor from Stone to $\mathbf{S p}_{R}$ is the Boolean power functor (-$)^{*}$: Stone $\rightarrow \mathbf{S p}_{R}$ that associates with each $X \in \mathbf{S t o n e}$ the Boolean power $X^{*}=C\left(X, R_{\mathrm{disc}}\right)$, where $C\left(X, R_{\mathrm{disc}}\right)$ is the R-algebra of continuous functions from X to the discrete space $R_{\text {disc }}$, and with each continuous map $\varphi: X \rightarrow Y$ the R-algebra homomorphism $\varphi^{*}: Y^{*} \rightarrow X^{*}$ given by $\varphi(f)=f \circ \varphi$. The functor $(-)_{*}: \mathbf{S p}_{R} \rightarrow$ Stone sends the Specker R-algebra S to the Stone space of $\operatorname{Id}(S)$ and associates with each R-algebra homomorphism $S \rightarrow T$, the continuous map from the Stone space of $\operatorname{Id}(T)$ to the Stone space of $\operatorname{Id}(S)$.

We next show that for an indecomposable R, the functor $(-)_{*}: \mathbf{S p}_{R} \rightarrow$ Stone has a natural interpretation, one that does not require reference to $\operatorname{Id}(S)$. Let S be a Specker R-algebra and let $\operatorname{Hom}_{R}(S, R)$ be the set of R-algebra homomorphisms from S to R. We define a topology on $\operatorname{Hom}_{R}(S, R)$ by declaring $\left\{U_{s}: s \in S\right\}$ as a subbasis, where $U_{s}=\left\{\alpha \in \operatorname{Hom}_{R}(S, R): \alpha(s)=0\right\}$. We also recall that the Stone space of a Boolean algebra B can be described as the set $\operatorname{Hom}(B, \mathbf{2})$ of Boolean homomorphisms from B to 2, topologized by the basis $\{Z(e): e \in B\}$, where $Z(e)=\{\sigma \in \operatorname{Hom}(B, 2): \sigma(e)=0\}$.

Proposition 3.5. Let R be indecomposable and let S be a Specker R-algebra. Then $\operatorname{Hom}_{R}(S, R)$ is homeomorphic to $\operatorname{Hom}(\operatorname{Id}(S), \mathbf{2})$.

It follows that for an indecomposable R, the dual space $\operatorname{Hom}_{R}(S, R)$ of a Specker R-algebra S is homeomorphic to the Stone space of $\operatorname{Id}(S)$. This allows us to describe the contravariant functor $(-)_{*}: \mathbf{S p}_{R} \rightarrow$ Stone as follows. Associate with each $S \in \mathbf{S p}_{R}$ the Stone space $S_{*}=\operatorname{Hom}_{R}(S, R)$, and with each R-algebra homomorphism $\alpha: S \rightarrow T$, the continuous map $\alpha_{*}: T_{*} \rightarrow S_{*}$ given by $\alpha_{*}(\delta)=\delta \circ \alpha$ for each $\delta \in T_{*}=\operatorname{Hom}_{R}(T, R)$. Thus, we have a description of $(-)_{*}$ that does not require passing to idempotents.

We conclude this section by giving a module-theoretic characterization of Specker R-algebras for an indecomposable R, which strengthens a result of Bergman [2, Cor. 3.5].

Theorem 3.6. Let R be indecomposable and let S be an idempotent generated commutative R-algebra. Then the following are equivalent.

1. S is a Specker R-algebra.
2. S is a free R-module.
3. S is a projective R-module.

4 Specker algebras over a domain

When R is an integral domain, Theorem 3.6 can be strengthened as follows.
Proposition 4.1. Let R be a domain and let S be an idempotent generated commutative R algebra. Then S is a Specker R-algebra iff S is a torsion-free R-module.

We recall the well-known definition of a Baer ring and a weak Baer ring in the case of a commutative ring.
Definition 4.2. A commutative ring R is a Baer ring if the annihilator ideal of each subset of R is a principal ideal generated by an idempotent, and R is a weak Baer ring if the annihilator ideal of each element of R is a principal ideal generated by an idempotent.

Theorem 4.3. Let S be a Specker R-algebra. Then S is Baer iff S is weak Baer and $\operatorname{Id}(S)$ is a complete Boolean algebra.
Corollary 4.4. Let R be indecomposable and let S be a Specker R-algebra. Then S is Baer iff R is a domain and $\operatorname{Id}(S)$ is a complete Boolean algebra.
Theorem 4.5. If R is a domain and S is a Specker R-algebra, then S_{*} is homeomorphic to the space $\operatorname{Min}(S)$ of minimal prime ideals of S.

Let $\mathbf{B S} \mathbf{p}_{R}$ be the full subcategory of $\mathbf{S p}_{R}$ consisting of Baer Specker R-algebras, let $\mathbf{c B A}$ be the full subcategory of BA consisting of complete Boolean algebras, and let ED be the full subcategory of Stone consisting of extremally disconnected spaces.

Theorem 4.6.

1. When R is a domain, the categories $\mathbf{B S p}_{R}$ and $\mathbf{c B A}$ are equivalent.
2. When R is a domain, the categories $\mathbf{B S} \mathbf{p}_{R}$ and $\mathbf{E D}$ are dually equivalent.

Since injectives in BA are exactly the complete Boolean algebras, as an immediate consequence of Theorem 4.6, we obtain:
Corollary 4.7. When R is a domain, the injective objects in $\mathbf{S p}_{R}$ are the Baer Specker R algebras.

References

[1] B. Banaschewski and E. Nelson, Boolean powers as algebras of continuous functions, Dissertationes Math. (Rozprawy Mat.) 179 (1980), 51.
[2] G. M. Bergman, Boolean rings of projection maps, J. London Math. Soc. 4 (1972), 593-598.
[3] G. Bezhanishvili, P. J. Morandi, and B. Olberding, Bounded Archimedean ℓ-algebras and Gelfand-Neumark-Stone duality, Theory and Applications of Categories, 2013, to appear.
[4] P. Conrad, Epi-archimedean groups, Czechoslovak Math. J. 24 (99) (1974), 192-218.
[5] A. L. Foster, Generalized "Boolean" theory of universal algebras. I. Subdirect sums and normal representation theorem, Math. Z. 58 (1953), 306-336.
[6] , Functional completeness in the small. Algebraic structure theorems and identities, Math. Ann. 143 (1961), 29-58.
[7] G.-C. Rota, The valuation ring of a distributive lattice, Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973), Dept. Math., Univ. Houston, Houston, Tex., 1973, pp. 574-628.

