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Abstract 
An interpolation technique-based meshfree method using polynomial functions is 

employed to analyze static behavior of sandwich beams with functionally graded face 
sheets and homogenous soft core. Various beam theories are expressed in general form 
and taken into account both shear deformation and normal deformation effects. 
Governing equation is derived from the principle of virtual work. The obtained results 
have been verified with the previously published works and a good agreement is found. 
The effects of skin-core-skin thickness ratios, material volume fraction indices, 
slenderness ratios, shear deformation and thickness stretching effect on deflection and 
axial stress are investigated and discussed.  

1 Introduction 
Due to high stiffness-to-weight ratio, high strength-to-weight ratio as well as possessing good 

properties such as resistance to corrosion, abrasion or heat transfer, sound and energy absorption, etc., 
sandwich structures have been widely applied in many areas of aerospace, space, construction, 
machine elements, etc. [1] 

A typical sandwich structure usually consists of two skin layers and a core embedded between 
them that deliberately promotes good material properties of each layer. Commonly, material of each 
layer is homogeneous, isotropic but completely different from layer to layer which insults in sudden 
changes in the properties at the contact face between layers. This causes stress concentration and leads 
to failure or separation. Those drawbacks could be avoided by using materials in which their 
mechanical properties change gradually. Functionally graded materials (FGMs) [2, 3] recently have 
developed as the potential candidates satisfying the above requirements. Sandwich structures made of 
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FGMs are named FG sandwich structures. So far, FG sandwich structures such as beams, plates have 
been used in many high-tech fields [2, 3] and promises great potential application in the near future. 

Simulation for prediction of the mechanical response is an important part to aid the experiment, 
design, fabrication or operation of the structures. Moreover, for structures with novel materials, this 
topic also attracts research efforts to reveal and implement strange behaviors. To this end, it is 
possible to use several computational methods which could be divided into two major groups. The 
first group is analytical solutions, which gives ideal results but has challenges with complex issues. 
Numerical methods, belonging to the second group with approximation solution, allow to overcome 
the problems of analytical solutions. Many numerical methods which have been developed and 
proposed for these purposes such as Ritz method, finite element method (FEM), meshfree method, 
shooting method, Lagrange multiplier method, state space method, etc., was reviewed in great detail 
by Sayyadandy and Ghugal [2] 

Meshfree method has been developed and applied over three decades. It is proved to be an 
effective numerical solution, especially for complex structural problems that FEM has challenges [4]. 
There have been several different structural problems successfully simulated employing this method. 
However, for a class of complicated engineering problems about mechanical properties as FG 
sandwich beams, using this method is very limited, only a few reports are found: Karamanlı [5] 
employed a kind of mesh free methods, namely symmetric smoothed particle hydrodynamics method, 
to analyze elastostatic behavior of the two directional FG sandwich beams based on a quasi-3D 
theory. Amirani et al. [6] used the element free Galerkin method and Galerkin formulation for two-
dimensional elasticity problems to investigate free vibration of sandwich beams; Bui et al. [7] 
proposed a truly meshfree method for dynamic analysis of sandwich beams with functionally graded 
core and homogeneous face sheets. The displacement field is approximated via radial basis function 
without predefined mesh, and the domain integrals are determined by the Cartesian transformation 
method to obviate the need for a background cell; Yang et al. [8] applied a meshfree boundary-
domain integral equation method to investigate free vibration behavior of FG sandwich beams. Radial 
integration method was used to transform the domain integrals related to material non-homogeneity 
and inertia effect into boundary integrals. 

Euler-Bernoulli beam theory (CBT) is simple, but only suitable for thin beams. For thick beams, 
neglecting shear deformation does not fully reflect the actual behavior and lead to overestimate load-
carrying capacity of beams. Therefore, several different beam theories have been proposed to take 
into account the effects of this deformation: first-order beam theory (FBT) - also known as 
Timoshenko beam theory, high-order beam theories (HBTs), and most recently, quasi-3D theory with 
combining both shear deformation and thickness stretching effects [5, 9, 10, 11, 12]. Overview of 
these theories and their mathematical formulations are presented in detail in Ref. [2]. 

In this paper, static behavior of FG sandwich beams is simulated by a meshfree method using 
point interpolation technique and polynomial basic function. The beams consist of a homogeneous 
soft core and two FGM face sheets whose mechanical properties vary continuously according to the 
power law in the depth-direction. Different beam theories expressed in general form are taken into 
account both shear deformation and normal deformation effects. The equilibrium equation is derived 
from the principle of virtual work. Polynomial basic function is employed to construct shape 
functions and approximate the global displacement field of computational domain. Numerical 
examples are conducted to verify the accuracy and evaluate the effectiveness of the computational 
method. Deflections, stresses are also investigated in detail with consideration the effects of skin-
core-skin thickness ratios, material volume fraction indices and beam theories. 
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2 Mathematical formulations 
2.1 FG sandwich beam 

Consider an FG sandwich beam of dimensions having two face sheet layers composed of 
FG material and a full metal core layer - homogenous soft-core type, as shown in Figure 1. The layers 
are represented by numeric indicators 1, 2, and 3. The top and bottom surfaces are located at 

, respectively. The beam is named according to the thickness ratio among the skin-core-
skin; for example, 1-2-1 beam is the sandwich beam whose core thickness doubles the face sheet 
thickness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming Poisson’s ratio v is constant while Young’s modulus E is changed in each layer of the 

beam along the z-axis according to the power-law distribution: 

  (1) 

where the superscript (i) denotes the i-th layer; Ec and Em are Young’s modulus of ceramic and metal 
constituents of FG materials, respectively; k is the volume fraction index, k ³ 0. 

2.2 Displacement, deformation and stress fields 
The general displacement field, which includes transverse shear deformation and normal 

deformation effects according to quasi-3D beam theory, could be described in Eqs. (2)-(3) below 

 
 

(2)
 

  (3) 

in which are the displacements of a point at the mid-plane (z = 0);  is the shear strain of 
the beam at the mid-plane; F(z) is the shape function which describes the distribution of the shear 
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             Figure 1: FG sandwich beam with geometric parameters and coordinate 
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strain through the beam depth; and stand for the derivatives ; the 

exponent represents the transpose.  
By setting  and choosing appropriate functions F(z), other different beam theories could 

be received as:  for classical beam theory (CBT), for first-order beam theory 
(FBT),  for third-order beam theory (TBT). 

The strain field associated with the displacement field in Eq. (2) are expressed as  

 
    

(4) 

  (5) 

The stress field could be obtained from Hooke’s law and is expressed in matrix form below 

  (6) 

  (7) 

2.3 Energy expressions of the beam 
The virtual work done by internal force on virtual strain: 
  (8) 

Applying Hooke's law (Eq. (6)) and substituting Eq. (4) into Eq. (8), lead to: 

   (9) 

 [D]E is the matrix of dimension (6´6) containing elastic coefficients which are determined 
through E(z) and v; V is the volume of the beam. 

The virtual work done by external distributed load q(x) on virtual displacement: 

         (10)        

2.4 Approximation of general displacement field in the beam 
In this section, a meshfree method based on point interpolation technique and polynomial basic 

function, proposed by Liu and abbreviated as PIM [4], is implemented and developed to approximate 
the displacement field of the beam. The procedure for the approximation is as follows. 

Scattering n arbitrarily distributed nodes at the mid-plane and along the x-axis (1D beam model), 
the displacement field at the mid-plane of the beam could be approximated through the discrete 
displacement values at the nodes using the polynomial basic function:  
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Coefficients and polynomial basic functions: 

  (15) 

 
 

(16) 

  (17) 

Note that {pw(x)}T is chose to be 2n terms because wo is approximated to satisfy two degrees of 
freedom (deflection and derivatives of deflection) at each node. 

The (5´n) coefficients{au},{aw},{af},{awz} are determined by enforcing Eqs. (11)-(14) to be 
satisfied the displacement conditions at the nodes. Suppose that the nodal values of node j-th at x = xj 
are {qj} = {uoj, woj, qoj, foj, wozj}, thus: 

 
  

(18) 

Rewriting Eq. (18) for all nodes (j = 1, ..., n) in the matrix form: 
  (19)
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By substituting the coefficients {a} into Eqs. (11)-(14), the displacement field at the mid-plane is 
expressed in the nodal displacements{q}: 

   (21) 

Rearranging and replacing uo(x), wo(x), fos(x), woz(x) from Eq. (21) into the energy expressions 
(Eqs. (9) and (10)), then applying the principle of virtual work, which has the mathematical form 

, we obtain the algebraic equations: 

  (22) 
where [K] is stiffness matrix and {F} is nodal load vector. 

The nodal displacements,{q}, are determined by solving Eq. (22), then are used to calculate the 
strains and stresses. 

3 Numerical results and discussion 
FG sandwich beams subjected to a uniformly distributed load of magnitude qo is investigated for 

the case of simply supported edges. Mechanical properties of FGMs of the face sheets are ceramic 
(Alumina: Ec = 380 GPa, nc = 0.3) and metal (Aluminum: Em = 70 GPa, nm = 0.3) - referred from [10] 
while homogeneous core is made of metal (Aluminum). Two cases of span-to-depth ratio L/h = 5 
(representing thick beams) and L/h = 20 (representing thin beams) are considered. Results are reduced 
to be dimensionless as shown in following forms 

   (23) 

3.1  Convergence and validation study 
In Table 1, dimensionless values of axial stress at a specific position of 2-2-1 sandwich beam are 

obtained through the analysis by increasing number of uniformly scatted nodes. Also, for the purpose 
of comparison, the study is conducted with the consideration of FG sandwich homogeneous hard core 
- only for this aim - which was studies by Vo et al. [10] using analytical solution and FEM. To 
achieve this goal, we just interchange the roles of Em and Ec in the formulations in Section 2.1. 

 

Theories 
Number of nodes Vo et 

al. 
[10] 2 3 4 5 6 7 8 

CBT 1.04748 1.60027 1.57122 1.57122 1.57122 1.57122 1.57122 - 

FBT 1.04748 1.60027 1.57122 1.57122 1.57122 1.57122 1.57122 1.5712 

TBT 1.06361 1.61640 1.58739 1.58739 1.58732 1.58732 1.58743 1.5873 

Quasi-3D 1.06521 1.61456 1.58555 1.58423 1.58413 1.58563 1.58591 1.5849 

Table 1: Convergence study and comparison for the dimensionless axial stress  (L/h = 5, k = 2, 2-2-1 

FG sandwich beam) 

{ } ( ) ( ){ } { } { }1
( ) ( ) ( ) ( )

T T T
o o o os oz Qd u x w x x w x p x a p x P qf

-
é ù= = = ë û

ext int 0W Wd d- =

[ ]{ } { },K q F=

( ) ( ) ( ) ( )
3

4
100, , ; , ,m

x x
oo

E bh bhw x z w x z x z x z
q Lq L

s s= =

,
2 2x
L hs æ ö

ç ÷
è ø

Bending Analysis of Sandwich Beam with Functionally Graded Face Sheets Using ... M. D. Do et al.

144



The numerical results in Table 1 show that the convergence rate is amazingly fast. For CBT, FBT 
and TBT, the results have converged to 5 digits behind the decimal point for only the 4-node diagram 
required. It should be noted that quasi-3D beam theory gives a low rate convergence when compared 
to the other theories. Also, the results match well with those by Vo et al. [10] which confirms the 
model accuracy. 

3.2 Parametric studies 
In this subsection, the effects of slenderness ratios (L/h), volume fraction indices, skin-core-skin 

thickness ratio and various beam theories on static behavior of the beams such as vertical 
displacement, axial stress are numerically investigated in detail. Note that only the soft-core sandwich 
beams are considered. 

Table 2 presents the central dimensionless vertical displacement of the beams. As expected, the 
beams using CBT gives smaller deflections than those using the other theories because of ignoring 
shear deformation effect, and this effect is more pronounced in the thick beams (L/h = 5) than in the 
 

L/h Theories k  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 
 5 

CBT 0 15.6250 15.6250 15.6250 15.6250 15.6250 15.6250 
15.625

0 
 

FBT 0 17.1850 17.1850 17.1850 17.1850 17.1850 17.1850 
17.185

0 
 

TBT 0 17.1830 17.1830 17.1830 17.1830 17.1830 17.1830 
17.183

0 
 

Quasi-3D 0 17.0425 17.0425 17.0425 17.0425 17.0425 17.0425 
17.042

5 
 CBT 0.5 4.5901 4.9349 5.2824 5.2807 5.7451 5.9431 8.7560 
 FBT 0.5 5.2201 5.6502 6.0228 6.0670 6.5724 6.8407 9.9604 
 

TBT 0.5 5.4018 5.9150 6.2562 6.3802 6.8575 7.1775 
10.134

3 
 

Quasi-3D 0.5 5.3634 5.8743 6.2048 6.3372 6.8017 7.1302 
10.066

0 
 CBT 5 2.9208 3.0043 3.2264 3.1354 3.4537 3.4651 5.4693 
 FBT 5 3.2534 3.3990 3.6404 3.5863 3.9390 4.0134 6.3669 
 TBT 5 3.2952 3.5276 3.7483 3.8055 4.1445 4.3760 6.7608 
 Quasi-3D 5 3.2691 3.5012 3.7161 3.7784 4.1083 4.3471 6.7196 
 20 

CBT 0 15.6250 15.6250 15.6250 15.6250 15.6250 15.6250 
15.625

0 
 

FBT 0 15.7225 15.7225 15.7225 15.7225 15.7225 15.7225 
15.722

5 
 

TBT 0 15.7225 15.7225 15.7225 15.7225 15.7225 15.7225 
15.722

5 
 Quasi-3D 0 15.7140 15.7140 15.7140 15.7140 15.7140 15.7140 15.714
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0 
 CBT 0.5 4.5901 4.9349 5.2824 5.2807 5.7451 5.9431 8.7560 
 FBT 0.5 4.6295 4.9796 5.3287 5.3299 5.7968 5.9992 8.8313 
 TBT 0.5 4.6409 4.9963 5.3434 5.3496 5.8148 6.0204 8.8423 
 Quasi-3D 0.5 4.6386 4.9939 5.3316 5.3470 5.8015 6.0176 8.8382 
 CBT 5 2.9208 3.0043 3.2264 3.1354 3.4537 3.4651 5.4693 
 FBT 5 2.9416 3.0290 3.2522 3.1636 3.4840 3.4994 5.5254 
 TBT 5 2.9443 3.0371 3.2590 3.1774 3.4970 3.5222 5.5502 
 Quasi-3D 5 2.9427 3.0355 3.2523 3.1758 3.4872 3.5204 5.5478 

Table 2: Dimensionless vertical displacements  of FG sandwich beams 

thin ones (L/h = 20). For the case of homogeneous beam (k = 0), FBT and TBT give almost the same 
displacement values. However, k ¹ 0, TBT gives slightly higher values than both FBT and quasi-3D 
theory. It is noted that the vertical displacement of beams increases as the layer thickness ratio 
increases from 1-0-1 to 2-1-2 to 2-1-1 to 1-1-1 to 2-2-1 to 1-2-1 to 1-8-1 due to the increase in the 
soft-core thickness ratio. However, by comparison between the 2-1-1 and the 1-1-1 beam for some 
cases of k and beam theories, the 2-1-1 beam gives a bit more deflection values than the 1-1-1 one 
does which is highlighted in red. This trend greatly affects the thin beam (L/h = 20) rather than the 
thick one (L/h = 5). 

Dimensionless axial stress values at the top fiber of the central cross-section of the beams are 
listed in Table 3. It is worth noting that FBT and CBT give identical stress values and smaller in 
compared to TBT or to quasi-3D theory. In general, quasi-3D gives slightly higher axial stress values 
than those of TBT.  

 
L/h Theories k  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 
5 CBT 0 3.7500 3.7500 3.7500 3.7500 3.7500 3.7500 3.7500 
 FBT 0 3.7500 3.7500 3.7500 3.7500 3.7500 3.7500 3.7500 
 TBT 0 3.8017 3.8017 3.8017 3.8017 3.8017 3.8017 3.8017 
 Quasi-3D 0 3.8011 3.8011 3.8011 3.8011 3.8011 3.8011 3.8011 
 CBT 0.5 5.9802 6.4295 7.5452 6.8800 8.2351 7.7431 11.4078 
 FBT 0.5 5.9802 6.4295 7.5452 6.8800 8.2351 7.7431 11.4078 
 TBT 0.5 6.1047 6.5744 7.6740 7.0370 8.3788 7.9099 11.5851 
 Quasi-3D 0.5 6.1091 6.5806 7.6792 7.0441 8.3850 7.9175 11.5904 
 CBT 5 3.8054 3.9142 4.5711 4.0850 5.0016 4.5145 7.1258 
 FBT 5 3.8054 3.9142 4.5711 4.0850 5.0016 4.5145 7.1258 
 TBT 5 3.8718 4.0043 4.6464 4.1955 5.0941 4.6515 7.2739 
 Quasi-3D 5 3.8726 4.0073 4.6488 4.2005 5.0983 4.6591 7.2817 
20 CBT 0 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 
 FBT 0 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 
 TBT 0 15.0130 15.0130 15.0130 15.0130 15.0130 15.0130 15.0130 
 Quasi-3D 0 15.0127 15.0127 15.0127 15.0127 15.0127 15.0127 15.0127 
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 CBT 0.5 23.9209 25.7180 30.1808 27.5201 32.9405 30.9722 45.6313 
 FBT 0.5 23.9209 25.7180 30.1808 27.5201 32.9405 30.9722 45.6313 
 TBT 0.5 23.9522 25.7546 30.2132 27.5596 32.9767 31.0143 45.6760 
 Quasi-3D 0.5 23.9532 25.7560 30.2144 27.5613 32.9781 31.0161 45.6770 
 CBT 5 15.2217 15.6569 18.2844 16.3401 20.0062 18.0581 28.5031 
 FBT 5 15.2217 15.6569 18.2844 16.3401 20.0062 18.0581 28.5031 
 TBT 5 15.2385 15.6796 18.3033 16.3679 20.0296 18.0927 28.5404 
 Quasi-3D 5 15.2385 15.6802 18.3038 16.3691 20.0305 18.0945 28.5423 

Table 3: Dimensionless axial stress  of FG sandwich beams 

The influence of various beam theories and slenderness ratios on the central dimensionless 
deflection of the 1-2-1 beam is illustrated in Figure 2. It is found that the deflection value decreases 
with increasing L/h ratio for all beam theories, except for CBT which gives constant value. For the 
thick beam with small L/h, the deviation of results calculated by the beam theories is significant, but 
negligible for the thin one (high L/h ratio). 

Effect of power-lax index (k) on the central dimensionless deflection of the 1-2-1 beam is shown 
in Figure 3. When k = 0, the sandwich beams become the homogeneous one of full metal, and the 
greatest deflection values are given. As k increases gradually, the deflection values decrease because 
the ceramic component density, which has higher modulus, decreases. It could be found that the most 
sensitive effect of this index belongs to the range [0-2]. 

,
2 2

x
L hs æ ö
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è ø

Figure 2: Variation of dimensionless deflections with respect to L/h ratio (1-2-1, k = 5) 
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Figure 3: Variation of dimensionless deflections with respect to the power-law index k (1-2-1, L/h = 5) 
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4 Conclusions 
A meshfree method based on point interpolation technique using polynomial basic function (PIM) 

has been well implemented and developed for static analysis behavior of sandwich beams with 
functionally graded face sheets. Various beam theories are taken into account in order to consider 
shear deform effects as well as compare results obtained among them. Four-unknown governing 
equation is derived from the principle of virtual work. The meshfree method using polynomial basic 
function along with the global approximation of the displacement field in the report is simple, fast 
convergence, efficient and accurate. Numerical examples are carried out to examine detailed effects of 
the span-to-height ratio (L/h), the layer thicknesses ratio, the power-lax index (k), the different beam 
theories on axial stress and vertical displacement. These effects are highly significant and should be 
considered in analysis and design of FG sandwich beams. The numerical results presented in tabular 
form is also a good source reference for future researches in order to compare results. 
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