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Abstract

Proofs are a key feature of modern propositional and first-order theorem provers. Proofs
generated by such tools serve as explanations for unsatisfiability of statements. However,
these explanations are complicated by proofs which are not necessarily as concise as possi-
ble. There are a wide variety of compression techniques for propositional resolution proofs,
but fewer compression techniques for first-order resolution proofs generated by automated
theorem provers. This paper describes an approach to compressing first-order logic proofs
based on lifting proof compression ideas used in propositional logic to first-order logic. An
empirical evaluation of the approach is included.

1 Introduction

Explainable artificial intelligence is a major challenge for the artificial intelligence community
[3]. As artificial intelligence systems are used in a wider range of applications with greater con-
sequences, the need to justify and verify the choices made by these systems will grow as well.
In the logical approach to artificial intelligence, theorem provers provide explanations through
verifiable proofs of the decisions that they make. On the other hand, machine learning-based
approaches often fail to explain why they produced a particular answer (see e.g., [16]). In order
to improve the ability to explain machine learning-based systems, there have been suggestions
and attempts to combine machine learning with automated reasoning tools to generate explain-
able results [3, 22]. The logical approach to artificial intelligence is no longer separate from the
machine learning approach. Good proofs are therefore useful for the successful combination of
these approaches, and this paper aims to improve generated proofs through proof compression.

Proof production is a key feature for modern theorem provers. Proofs are explanations for
unsatisfiability, and are crucial for applications that require certification of a prover’s answers
or that extract additional information from proofs (e.g. unsat cores, interpolants, instances
of quantified variables). Mature first-order automated theorem provers, commonly based on
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refinements and extensions of resolution and superposition calculi [19, 20, 28, 17, 15], support
proof generation. However, proof production is non-trivial [21], and the most efficient provers
do not necessarily generate the shortest proofs.

Proof compression techniques ameliorate the difficulties that automated reasoning tools
encounter during proof generation. Such techniques can be integrated into theorem provers
or external tools with minimal overhead. Moreover, proof compression techniques (like those
described in this paper) may result in a stronger proof which uses a strict subset of the original
axioms required, which could also be considered simpler. The problem of proof compression is
also closely related to Hilbert’s 24th Problem [25], which asks for criteria to judge the simplicity
of proofs; proof length is one possible criterion.

There are also technical reasons to seek smaller proofs. Longer proofs take longer to check,
consume more memory during proof-checking, occupy more storage space and are harder to
exchange, may have a larger unsat core (if more input clauses are used in the proof), and have
a larger Herbrand sequent if more variables are instantiated [29, 11, 12, 18]. Recent applications
of SAT solvers to mathematical problems have resulted in very large proofs; e.g., the proof of
a long-standing problem in combinatorics was initially 200GB [14]. Such proofs are hard to
store, let alone validate. More practically, a restriction of 100GB of disk space per benchmark
per solver prevented validation of proofs in the SAT 2014 competition [13]. The inability to
write their results to disk renders these solvers useless in some cases. Moreover, even if the
only direct improvement of shorter proofs is in the communication between systems, there are
indirect benefits to the end-user of a tool e.g., in terms of its responsiveness.

For propositional resolution proofs, as those typically generated by SAT- and SMT-solvers,
there is a wide variety of proof compression techniques. These techniques include investigating
algebraic properties of resolution [6], rearranging and sharing chains of resolution inferences
[1, 23], and splitting a proof according a literal which may result in a compressed proof when
recombined [5]. Bar-Ilan et al. [2] and Fontaine et al. [7] described a linear time proof
compression algorithm based on partial regularization, which removes an inference η when it is
redundant in the sense that its pivot literal already occurs as the pivot of another inference in
every path from η to the root of the proof.

By contrast, there has been much less work on simplifying first-order proofs. For arbitrary
proofs in the Thousands of Problems for Theorem Provers (TPTP) [24] format (including DAG-
like first-order resolution proofs), there is an algorithm [26] that looks for terms that occur often
in any Thousands of Solutions from Theorem Provers (TSTP) [24] proof and abbreviates them.

The work reported in this paper is part of a new trend that aims at lifting successful
propositional proof compression algorithms to first-order logic. We first lifted the LowerUnits

(LU) algorithm [7], which delays resolution steps with unit clauses, resulting in a new algorithm
that we called GreedyLinearFirstOrderLowerUnits (GFOLU) [9]. Here we continue this line of
research by lifting the RecyclePivotsWithIntersection (RPI) algorithm [7], which improves
the RecyclePivots (RP) algorithm [2] by detecting nodes that can be regularized even when
they have multiple children.

Section 2 defines the first-order resolution calculus. Section 3 summarizes the propositional
RPI algorithm. Section 4 discusses the challenges and conditions for partial regularization in the
first-order case. Section 6 presents experimental results obtained by applying this algorithm,
and its combinations with GFOLU, on proofs generated by SPASS [28] and randomly generated
proofs. Section 7 concludes the paper.
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2 The Resolution Calculus

As usual, our language has infinitely many variable symbols (e.g. x, y, z, x1, x2, . . . ), constant
symbols (e.g. a, b, c, a1, a2, . . . ), function symbols of every arity (e.g f , g, f1, f2, . . . ) and
predicate symbols of every arity (e.g. P , Q, P1, P2,. . . ). A term is any variable, constant
or the application of an n-ary function symbol to n terms. An atomic formula (atom) is the
application of an n-ary predicate symbol to n terms. A literal is an atom or the negation of an
atom. The complement of a literal ` is denoted ` (i.e. for any atom P , P = ¬P and ¬P = P ).
The underlying atom of a literal ` is denoted |`| (i.e. for any atom P , |P | = P and |¬P | = P ).
A clause is a multiset of literals. ⊥ denotes the empty clause. A unit clause is a clause with
a single literal. Sequent notation is used for clauses (i.e. P1, . . . , Pn ` Q1, . . . , Qm denotes
the clause {¬P1, . . . ,¬Pn, Q1, . . . , Qm}). A substitution {x1\t1, x2\t2, . . .} is a mapping from
variables {x1, x2, . . .} to, respectively, terms {t1, t2, . . .}. The application of a substitution σ
to a term t, a literal ` or a clause Γ results in, respectively, the term tσ, the literal `σ or the
clause Γσ, obtained from t, ` and Γ by replacing all occurrences of the variables in σ by the
corresponding terms in σ. A literal ` matches another literal `′ if there is a substitution σ such
that `σ = `′. A unifier of a set of literals is a substitution that makes all literals in the set
equal. We will use X v Y to denote that X subsumes Y , when there exists a substitution σ
such that Xσ ⊆ Y .

A resolution proof is a directed acyclic graph of clauses where the edges correspond to the
inference rules of resolution and factoring, as explained in detail in Definition 2.1. A resolution
refutation is a resolution proof with root ⊥.

Definition 2.1 (First-Order Resolution Proof). A directed acyclic graph 〈V,E,Γ〉, where V
is a set of nodes and E is a set of edges labelled by a set of literals and substitutions (i.e.
E ⊂ V × 2L × S × V , where L is the set of all literals and S is the set of all substitutions,

and v1
{`}−−→
σ

v2 denotes an edge from node v1 to node v2 labelled by the literal set {`} and the

substitution σ), is a proof of a clause Γ iff it is inductively constructible by the following cases:

• Axiom: If Γ is a clause, Γ̂ denotes some proof 〈{v},∅,Γ〉, where v is a new node.

• Resolution1: If ψL is a proof 〈VL, EL,ΓL〉 and ψR is a proof 〈VR, ER,ΓR〉, σL and σR
are substitutions s.t. `LσL = `RσR, then ψL �σLσR`L`R

ψR denotes a proof 〈V,E,Γ〉 s.t.

V = VL ∪ VR ∪ {v}, Γ = Γ′LσL ∪ Γ′RσR, E = EL ∪ ER ∪
{
ρ(ψL) {`L}−−−−→

σL
v, ρ(ψR) {`R}−−−−−→

σR
v

}
,

where v is a new (resolution) node and ρ(ϕ) denotes the root node of ϕ. The literals `L
and `R are resolved literals, whereas `LσL and `RσR are its instantiated resolved literals.
The pivot is the underlying atom of its instantiated resolved literals (i.e. |`LσL| or,
equivalently, |`RσR|).

• Factoring: If ψ′ is a proof 〈V ′, E′,Γ′〉, σ is a unifier of {`1, . . . , `n}, and ` = `iσ for any
i ∈ {1, . . . , n}, then bψcσ{`1,...`n} denotes a proof 〈V,E,Γ〉 s.t.

V = V ′ ∪ {v}, Γ = Γ′σ ∪ {`}, E = E′ ∪ {ρ(ψ′)
{`1,...`n}−−−−−−→

σ
v},

where v is a new (factoring) node, and ρ(ϕ) denotes the root node of ϕ.
1This is referred to as “binary resolution” elsewhere, with the understanding that “binary” refers to the

number of resolved literals, rather than the number of premises of the inference rule.
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η6: P (y, b) `

η1: ` P (w, x) η2: P (w, x) ` Q(c)

η3: ` Q(c) η4: Q(c) ` P (a, x)

η5: ` P (a, x)

ψ: ⊥

η1: ` P (w, x) η6: P (y, b) `
ψ′: ⊥

Figure 1: A proof ψ (left), and a regularized proof ψ′ (right).

3 The Propositional Algorithm

RPI (formally defined in [7]) removes irregularities, which are resolution inferences deriving
a node η when the resolved literal occurs as the pivot of another inference located below in
the path from η to the root of the proof. In the worst case, regular resolution proofs can
be exponentially bigger than irregular ones, but RPI takes care of regularizing the proof only
partially, removing inferences only when this does not enlarge the proof.

RPI traverses the proof twice. On the first traversal (bottom-up), it computes and stores
for each node a set of safe literals: literals that are resolved in all paths from the node to the
root of the proof or that occur in the root clause. If one of the node’s resolved literals belongs
to the set of safe literals, then it is possible to regularize the node by replacing it by the parent
containing the safe literal. To do this replacement efficiently, the replacement is postponed by
marking the other parent as a deletedNode. Then, on a single second traversal (top-down),
regularization is performed: any node that has a parent node marked as a deletedNode is
replaced by its other parent.

The RPI and the RP algorithms differ from each other mainly in the computation of the safe
literals of a node that has many children. While the former returns the intersection, the latter
returns the empty set. Moreover, while in RPI the safe literals of the root node contain all the
literals of the root clause, in RP the root node’s set of safe literals is always empty.

4 Lifting to First-Order

Example 4.1. Consider the left proof ψ in Figure 1. When computed as in the propositional
case, the safe literals for η3 are {Q(c), P (a, x)}. As neither of η3’s resolved literals is syntac-
tically equal to a safe literal, the propositional RPI algorithm would not change ψ. However,
η3’s left resolved literal P (w, x) ∈ η1 is unifiable with the safe literal P (a, x). Regularizing η3,
by deleting the edge between η2 and η3 and replacing η3 by η1, leads to further deletion of η4

(because it is not resolvable with η1) and finally to the much shorter proof ψ′ in Figure 1.

Unlike in the propositional case, where a resolved literal must be syntactically equal to a safe
literal for regularization to be possible, Example 4.1 suggests that, in the first-order case, it
might suffice that the resolved literal be unifiable with a safe literal. However, there are cases
where mere unifiability is not enough and greater care is needed: e.g., when η1 : ` P (a, c) and
η2 : P (a, c) ` Q(c) in Example 4.1. One way to prevent these cases is to require the resolved
literal to be not only unifiable but subsume a safe literal. A slight modification to the concept
of safe literals, which takes into account the unifications that occur on the paths from a node
to the root, results in a weaker (and better) requirement.

Definition 4.1. The set of safe literals for a node η in a proof ψ with root clause Γ, denoted
S(η), is such that ` ∈ S(η) if and only if ` ∈ Γ or for all paths from η to the root of ψ there is

an edge v1
`′−→
σ
v2 with `′σ = `.
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η8: Q(f(a, e), c) `
η6: ` P (c, d)

η1: P (u, v) ` Q(f(a, v), u) η2: Q(f(a, x), y), Q(t, x) ` Q(f(a, z), y)

η3: P (u, v), Q(t, v) ` Q(f(a, z), u) η4: ` Q(r, s)

η5: P (u, v) ` Q(f(a, z), u)

η7: ` Q(f(a, z), c)

ψ: ⊥

Figure 2: An example where pre-regularizability is not sufficient.

As in the propositional case, safe literals can be computed in a bottom-up traversal of the proof.
Initially, at the root, the safe literals are exactly the literals that occur in the root clause. As

we go up, the safe literals S(η′) of a parent node η′ of η where η′
`−→
σ
η is set to S(η) ∪ {`σ}.

Note that we apply the substitution to the resolved literal before adding it to the set of safe
literals (cf. Algorithm 2, lines 8 and 10). In other words, in the first-order case, the set of safe
literals has to be a set of instantiated resolved literals.

In the modified case of Example 4.1, computing safe literals as in Definition 4.1 would result
in S(η3) = {Q(c), P (a, b)}, where clearly the pivot P (a, c) in η1 is not safe. A generalization
of this requirement, which can be thought of a necessary condition, is Definition 4.2.

Definition 4.2. Let η be a node with safe literals S(η) and parents η1 and η2, assuming without

loss of generality, η1
{`1}−−−→
σ1

η. The node η is said to be pre-regularizable in the proof ψ if `1σ1

matches a safe literal `∗ ∈ S(η).

Example 4.2. Satisfying the pre-regularizability is not sufficient. Consider the proof ψ in
Figure 2. After collecting the safe literals, S(η3) = {¬Q(r, v),¬P (c, d), Q(f(a, e), c)}. η3’s
pivot Q(f(a, v), u) matches the safe literal Q(f(a, e), c). Attempting to regularize η3 would lead
to the removal of η2, the replacement of η3 by η1 and the removal of η4 (because η1 does not
contain the pivot required by η5), with η5 also being replaced by η1. Then resolution between η1

and η6 results in η′7, which cannot be resolved with η8, as shown below.

η8: Q(f(a, e), c) `
η6: ` P (c, d) η1: P (u, v) ` Q(f(a, v), u)

η′7: ` Q(f(a, d), c)

ψ′: ??

η1’s literal Q(f(a, v), u), which would be resolved with η8’s literal, was changed to Q(f(a, d), c)
due to the resolution between η1 and η6.

Thus we additionally require that the following condition be satisfied, which ensures that the
remainder of the proof does not expect a variable in η1 to be unified to different values si-
multaneously. This property is not necessary in the propositional case, as the literals of the
replacement node do not change lower in the proof.

Definition 4.3. Let η be pre-regularizable, with safe literals S(η) and parents η1 and η2, with

clauses Γ1 and Γ2 respectively, assuming without loss of generality that η1
{`1}−−−→
σ1

η such that

`1σ1 matches a safe literal `∗ ∈ S(η). The node η is said to be strongly regularizable in ψ if
Γ1σ1 v S(η).

The notion of strongly regularizable can be thought of as a sufficient condition. The longer
version of this paper (available on the ArXiv [10]) discusses a conjectured weaker condition.
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input : A first-order proof ψ
output: A possibly less-irregular first-order proof ψ′

1 ψ′ ← ψ;

2 traverse ψ′ bottom-up and foreach node η in ψ′ do
3 if η is a resolvent node then
4 setSafeLiterals(η) ;
5 regularizeIfPossible(η)

6 ψ′ ← fix(ψ′) ;

7 return ψ′;

Algorithm 1: FORPI.

input : A first-order resolution node ψ
output: nothing (but the node ψ gets a set of safe literals)

1 if ψ is a root node with no children then S(ψ)← ψ.clause ;
2 else
3 foreach ψ′ ∈ ψ.children do
4 if ψ′ is marked as regularized then safeLiteralsFrom(ψ′) ← S(ψ′) ;

5 else if ψ′ = ψ �σLσR`L`R
ψR for some ψR then safeLiteralsFrom(ψ′) ← S(ψ′) ∪ {`RσR} ;

6 else if ψ′ = ψL �
σLσR
`L`R

ψ for some ψL then safeLiteralsFrom(ψ′) ← S(ψ′) ∪ {`LσL};
7 S(ψ) ←

⋂
ψ′∈ψ.children safeLiteralsFrom(ψ′)

Algorithm 2: setSafeLiterals for FORPI.

Theorem 4.3. Let ψ be a proof with root clause Γ and η be a node in ψ. Let ψ† = ψ \ {η} and
Γ† be the root of ψ†. If η is strongly regularizable, then Γ† v Γ.

Proof. By definition of strong regularizability, η is such that there is a node η′ with clause Γ′

and such that η′
{`′}−−→
σ′

η and `′σ′ matches a safe literal `∗ ∈ S(η) and Γ′σ′ v S(η).

Firstly, in ψ†, η has been replaced by η′. Since Γ′σ′ v S(η), by definition of S(η), every
literal ` in Γ′ either subsumes a single literal that occurs as a pivot on every path from η to
the root in ψ (and hence on every new path from η′ to the root in ψ†) or subsumes literals
`σ1,. . . ,`σn in Γ. In the former case, ` is resolved away in the construction of ψ† (by contracting
the descendants of ` with the pivots in each path). In the latter case, the literal `σk (1 ≤ k ≤ n)
in Γ is a descendant of ` through a path k and the substitution σk is the composition of all
substitutions on this path. When η is replaced by η′, two things may happen to `σk. If the
path k does not go through η, `σk remains unchanged (i.e. `σk ∈ Γ† unless the path k ceases

to exist in ψ†). If the path k goes through η, the literal is changed to `σ†k, where σ†k is such

that σk = σ′σ†k.
Secondly, when η is replaced by η′, the edge from η’s other parent η′′ to η ceases to exist

in ψ†. Consequently, any literal ` in Γ that is a descendant of a literal `′′ in the clause of η′′

through a path via η will not belong to Γ†.
Thirdly, a literal from Γ that descends neither from η′ nor from η′′ either remains unchanged

in Γ† or, if the path to the node from which it descends ceases to exist in the construction of
ψ†, does not belong to Γ† at all.

Therefore, by the three facts above, Γ†σ′ v Γ, and hence Γ† v Γ.

5 Implementation

FirstOrderRecyclePivotsWithIntersection (FORPI) (cf. Algorithm 1) is a first-order gen-
eralization of the propositional RPI. FORPI traverses the proof in a bottom-up manner, storing
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input : A node ψ = ψL �
σLσR
`L`R

ψR

output: nothing (but the proof containing ψ may be changed)

1 if ∃σ and ` ∈ S(ψ) such that ` = `RσRσ then
2 if ψRσRσ ⊆ S(ψ) then
3 mark ψL as deletedNode ;
4 mark ψ as regularized

5 else if ∃σ and ` ∈ S(ψ) such that ` = `LσLσ then
6 if ψLσLσ ⊆ S(ψ) then
7 mark ψR as deletedNode ;
8 mark ψ as regularized

Algorithm 3: regularizeIfPossible for FORPI.

for every node a set of safe literals. For a node ψ, S(ψ) is computed from the set of safe literals
of its children (cf. Algorithm 2), similarly to the propositional case, but additionally applying
unifiers to the resolved literals. If one of η’s resolved literals matches a literal in S(η), then it
may be possible to regularize η by replacing it by one of its parents.

In the first-order case, we additionally check for strong regularizability (cf. lines 2 and 6 of
Algorithm 3). Similarly to RPI, instead of replacing the irregular node by one of its parents
immediately, its other parent is marked as a deletedNode, as shown in Algorithm 3. As in the
propositional case, fixing of the proof is postponed to another (single) traversal, as regularization
proceeds top-down and only nodes below a regularized node may require fixing. During fixing,
the irregular node is actually replaced by the parent that is not marked as deletedNode. During
proof fixing, factoring inferences can be applied, in order to compress the proof further.

6 Experiments

A prototype version of FORPI has been implemented in the functional programming language
Scala as part of the Skeptik library. This library includes an implementation of GFOLU [9].
Note that by implementing the algorithms in this library, we have a relative guarantee that the
compressed proofs are correct, as in Skeptik every inference rule (e.g. resolution, factoring) is
implemented as a small class (each at most 178 lines of code that is assumed correct) with a
constructor that checks whether the conditions for the application of the rule are met, thereby
preventing the creation of objects representing incorrect proof nodes (i.e. unsound inferences).
We only need to check that the root clause of the compressed proof is equal to or stronger than
the root clause of the input proof and that the set of axioms used in the compressed proof is a
subset of the set of axioms used in the input proof.

FORPI was evaluated on the same 308 proofs generated by SPASS to evaluate GFOLU, as well
as 2280 (the same number of problems initially given to SPASS) randomly generated proofs.
Proof lengths varied from 3 to 700, while the number of resolutions in a proof ranged from 1
to 368 (1-32 resolutions for proofs in the TPTP data set; 1-368 resolutions for the proofs in
the random data set). The same laptop was used to perform proof compression. Details and a
discussion regarding the realism reflected in the random proofs are in the next subsection. The
proofs are available at https://github.com/jgorzny/Skeptik.

Additional proofs were generated by the following procedure: start with a root node whose
conclusion is ⊥, and make two premises η1 and η2 using a randomly generated literal such
that the desired conclusion is the result of resolving η1 and η2. For each node ηi, determine
the inference rule used to make its conclusion: with probability p = 0.9, ηi is the result of a
resolution, otherwise it is the result of factoring.

Literals are generated by uniformly choosing a number from {1, . . . , k, k+ 1} where k is the
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Algorithm # of Proofs Compressed # of Removed Nodes
TPTP Random Both TPTP Random Both

GFOLU(p) 55 (17.9%) 817 (35.9%) 872 (33.7%) 107 (4.8%) 17,769 (4.5%) 17,876 (4.5%)
FORPI(p) 23 (7.5%) 666 (29.2%) 689 (26.2%) 36 (1.6%) 28,904 (7.3%) 28,940 (7.3%)
GFOLU(FORPI(p)) 55 (17.9%) 1303 (57.1%) 1358 (52.5%) 120 (5.4%) 48,126 (12.2%) 48,246 (12.2%)
FORPI(GFOLU(p)) 23 (7.5%) 1302 (57.1%) 1325 (51.2%) 120 (5.4%) 48,434 (12.3%) 48,554 (12.3%)
Best 59 (19.2%) 1303 (57.1%) 1362 (52.5%) 120 (5.4%) 55,530 (14.1%) 55,650 (14.0%)

Table 1: Number of proofs compressed and number of overall nodes removed.

Algorithm First-Order Compression Algorithm Propositional Compression [4]
All Compressed Only

GFOLU(p) 4.5% 13.5% LU(p) 7.5%
FORPI(p) 6.2% 23.2% RPI(p) 17.8%
GFOLU(FORPI(p)) 10.6% 23.0% (LU(RPI(p)) 21.7%
FORPI(GFOLU(p)) 11.1% 21.5% (RPI(LU(p)) 22.0%
Best 12.6% 24.4% Best 22.0%

Table 2: Mean compression results.

number of predicates generated so far; if the chosen number j is between 1 and k, the j-th
predicate is used; otherwise, if the chosen number is k+ 1, a new predicate with a new random
arity (at most four) is generated and used. Each argument is a constant with probability p = 0.7
and a complex term (i.e. a function applied to other terms) otherwise; functions are generated
similarly to predicates.

If a node η should be the result of a resolution, then with probability p = 0.2 we generate
a left parent η` and a right parent ηr for η (i.e. η = η` � ηr) having a common parent ηc (i.e.
ηl = (η`)` � ηc and ηr = ηc � (ηr)r, for some newly generated nodes (η`)` and (ηr)r ). The
common parent ensures that also non-tree-like DAG proofs are generated.

This procedure is recursively applied to the generated parent nodes. Each parent of a
resolution has each of its terms not contained in the pivot replaced by a fresh variable with
probability p = 0.7. At each recursive call, the additional minimum height required for the
remainder of the branch is decreased by one with probability p = 0.5. Thus if each branch always
decreases the additional required height, the proof has height equal to the initial minimum value.
The process stops when every branch is required to add a subproof of height zero or after a
timeout is reached. The topmost generated node for each branch is always an axiom node.

The minimum height was set to 7 (which is the minimum number of nodes in an irregular
proof plus one) and the timeout was set to 300 seconds (the same timeout allowed for SPASS).
The probability values used in the random generation were carefully chosen to produce random
proofs similar in shape to the real proofs obtained by SPASS. For instance, the probability of a
new node being a resolution (respectively, factoring) is approximately the same as the frequency
of resolutions (respectively, factorings) observed in the real proofs produced by SPASS.

6.1 Results

For each proof ψ, we measured the time needed to compress the proof (t(ψ)) and the compression
ratio ((|ψ| − |α(ψ)|)/|ψ|) where |ψ| is the number of resolutions in the proof, and α(ψ) is the
result of applying a compression algorithm or some composition of FORPI and GFOLU. Note that
we consider only the number of resolutions in order to compare the results of these algorithms
to their propositional variants (where factoring is implicit). Moreover, factoring could be made
implicit within resolution inferences even in the first-order case and we use explicit factoring
only for technical convenience.
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Table 1 summarizes the results of FORPI and its combinations with GFOLU. The first set of
columns describes the percentage of proofs that were compressed by each compression algorithm.
The algorithm ‘Best’ runs both combinations of GFOLU and FORPI and returns the shortest proof
output by either of them. The total number of proofs is 308+2280 = 2588 and the total number
of resolution nodes is 2, 249 + 393, 883 = 396, 132. The percentages in the last three columns
are computed by (Σψ∈Ψ|ψ| −Σψ∈Ψ|α(ψ)|)/(Σψ∈Ψ|ψ|) for each data set Ψ (TPTP, Random, or
Both: the union of the other two data sets). The use of both algorithms allows at least an
additional 17.5% of proofs to be compressed. Furthermore, the use of both algorithms removes
almost twice as many nodes than any single algorithm. Only nine proofs from the TPTP data
set were compressed by FORPI, reducing the number of resolutions by at least one and at most
three. Given the size of the TPTP proofs, it is unsurprising that few are compressed: small
proofs are a priori less likely to contain irregularities. However, 252 (0.11%) of the randomly
generated proofs achieved some compression using only FORPI.

Table 2 compares the results of FORPI and its combinations with GFOLU (on first-order
proofs) with their propositional variants (on propositional proofs) as evaluated in [4]. The first
column describes the mean compression ratio for each algorithm including proofs that were not
compressed by the algorithm, while the second column calculates the mean compression ratio
considering only compressed proofs. It is unsurprising that the first column is lower than the
propositional mean for each algorithm: there are stricter requirements to apply these algorithms
to first-order proofs. In particular, additional properties must be satisfied before a unit can
be lowered, or before a pivot can be recycled. On the other hand, when first-order proofs are
compressed, the compression ratios of the first-order algorithms are on par with or better than
their propositional counterparts.

Figure 3 (a) is a scatter plot comparing the number of resolutions of the input proof against
the number of resolutions in the compressed proof for each algorithm. The results on the
TPTP data are magnified in the sub-plot. For the randomly generated proofs (points outside
of the sub-plot), it is often the case that the compressed proof is significantly shorter than
the input proof. Interestingly, GFOLU appears to reduce the number of resolutions by a linear
factor in many cases. This is likely due to a linear growth in the number of non-interacting
irregularities (i.e. irregularities for which the lowered units share no common literals with any
other sub-proofs), which leads to a linear number of nodes removed.

Figure 3 (b) is a scatter plot comparing the size of compression obtained by applying FORPI

before GFOLU versus GFOLU before FORPI. Data obtained from the TPTP data set is marked in
red; the remaining points are obtained from randomly generated proofs. Points that lie on the
diagonal line have the same size after each combination. There are 249 points beneath the line
and 326 points above the line. Therefore, as in the propositional case [7], it is not a priori clear
which combination will compress a proof more. Applying FORPI after GFOLU is more likely to
maximize the likelihood of compression, and the achieved compression also tends to be larger.

Figure 3 (c) shows a plot comparing the difference between the cumulative number of reso-
lutions of the first x input proofs and the cumulative number of resolutions in the first x proofs
after compression (i.e. the cumulative number of removed resolutions). The TPTP data is
displayed in the sub-plot; note that the lines for everything except FORPI largely overlap (since
the values are almost identical; cf. Table 1). The data shows that the best approach is to try
both combinations of FORPI and GFOLU and choose the best result.

Proof generation required approximately 110 minutes (including some cluster time), while
the total time to apply both algorithms on all these proofs was just over 7.5 minutes, only 6.8%
more time than generating proofs in the first place, on a simple laptop computer. All times
include parsing time. These compression algorithms are still fast in the first-order case, and
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(b) FORPI(GFOLU(p)) vs. GFOLU(FORPI(p)).
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Figure 3: GFOLU & FORPI Combination Results.

may simplify the proof considerably for a relatively small cost in time.
The use of FORPI alongside GFOLU allows at least an additional 17.5% of proofs to be com-

pressed. Furthermore, the likelihood of compression is maximized by applying FORPI after
GFOLU, and trying both compositions may be even more beneficial. On large proofs, thousands
of nodes may be removed quickly relative to the time required to initially generate the proof.

7 Conclusions and Future Work

The main contribution of this paper is the lifting of the propositional proof compression algo-
rithm RPI to the first-order case. As indicated in Section 4, the generalization is challenging,
because unification instantiates literals and, consequently, a node may be regularizable even if
its resolved literals are not syntactically equal to any safe literal. Unification must be taken
into account when collecting safe literals and marking nodes for deletion.

We evaluated the algorithm on two data sets, and the compression achieved by FORPI in
a short amount of time on this data set was compatible with our expectations and previous
experience in the propositional level. The obtained results indicate that FORPI is a promising
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compression technique to be reconsidered when first-order theorem provers become capable of
producing larger proofs. Although we carefully selected generation probabilities in accordance
with frequencies observed in real proofs, it is important to note that randomly generated proofs
may still differ from real proofs in shape and may be more or less likely to contain irregularities
exploitable by our algorithm.

In this paper, for the sake of simplicity, we considered a pure resolution calculus without
restrictions, refinements or extensions. It is conceptually easy to adapt the algorithm described
here to many practical variations of resolution. For instance, a common extension of resolution
is the splitting technique [27]. When splitting is used, each split sub-problem is solved by a
separate refutation, and FORPI could be applied to each refutation independently.

It would be interesting to determine if proof compression could be applied during proof
search, in order to improve the performance theorem provers. Additionally, it would be inter-
esting to see if similar techniques can be applied to proofs in higher-order logics.
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