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Abstract

The multi-agent path finding (MAPF) problem is a combinatorial search problem that aims at
finding paths for multiple agents such that no two agents collide with each other. We study a dynamic
variant of MAPF, called D-MAPF, which allows changes in the environment (e.g., some existing
obstacles may be removed from the environment or moved to some other location, or new obstacles
may be included in the environment), and/or changes in the team (e.g., some existing agents may
leave and some new agents may join the team) at different times. We introduce a new method to solve
D-MAPF, using answer set programming.

1 Introduction
The Multi-Agent Path Finding (MAPF) problem aims to find a plan for multiple agents to reach their
destinations in a certain environment with static obstacles, subject to some constraints on the maximum
or the total plan length. Every agent can be considered as a dynamic obstacle for other agents. Therefore,
the obstacles and the agents lead to some constraints for the executability of the plan: agents cannot pass
through obstacles, and agents cannot collide with each other. Although single-agent shortest pathfinding
can be solved in polynomial time [6], MAPF (with constraints on the plan length) is an intractable
problem [25] due to the latter constraint that no two agents can be in the same location at the same time.
Yet, MAPF has been studied in various domains, such as robotics [16], video games [28], autonomous
aircraft towing vehicles [22], traffic control [7] and autonomous warehouse systems [33].

During the execution of a computed plan for MAPF in a dynamic environment (e.g., a warehouse
that is not completely autonomous), changes may occur: existing obstacles may be removed from the
environment or moved to some other location in the environment, existing agents may leave the environ-
ment, or new agents may be included in the team with new tasks. Then the goal is to find a new solution
for the new team of agents in the modified environment. We call this problem Dynamic Multi-Agent
Path Finding Problem (D-MAPF). Note that D-MAPF inherits the intractability of MAPF, subject to
the constraints on plan lengths.

One of the possible solutions for D-MAPF is replanning: consider a new MAPF instance defined
by the current locations and goal locations of both the existing and the new agents, and the updated
environment, and compute a solution for this instance. Although replanning finds a solution, if one
exists, it does not re-use the plans of the existing agents and may not be computationally efficient.
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With this motivation, we propose a novel method to solve D-MAPF, using Answer Set Programming
(ASP) [21, 24, 17, 2, 3] (based on answer sets [10, 12]). The main idea (and novelty) of this method is,
instead of replanning for all the agents right away, to revise and augment the existing MAPF solution:
(revise) try to schedule the waiting times of existing agents as they traverse the rest of their paths,
(augment) while computing paths for the new agents within a given makespan (i.e., the length of the
plan). In this way, the paths for the existing agents can be re-used as part of the new plan. As observed by
our experimental evaluations, the re-use of plans as proposed by our method improves the computational
efficiency in timings significantly compared to replanning.

2 R-MAPF: Revising and Augmenting MAPF
D-MAPF can be viewed as a generalization of MAPF in a dynamic environment, that considers what
changes in the environment, such as adding new agents, removing some of the existing agents, adding or
removing obstacles or changing their locations, as well as what does not change, such as the itineraries
of existing agents. We propose to solve D-MAPF by revising and augmenting the existing MAPF
solution.

Let us first introduce some concepts and notation before we define the problem of revising and
augmenting an existing MAPF solution (called R-MAPF).

A traversal f of a path P = 〈w1, w2, . . . , wn〉 in a graph G within some time t (t ∈ Z+) is an onto
function that maps every nonnegative integer less than or equal to t to a vertex in P , such that, for every
wi and wj in P and for every x< t, if f(x) = wi and f(x+1) = wj , then wj = wi or wj = wi+1.

We denote by f(P ) a traversal f of a path P (within time t). We denote by PA the collection of
paths P for every agent in A, and by 〈P, f〉A the collection of pairs 〈Pi, fi(Pi)〉 of paths and their
traversals for every agent ai in A.

Let fi and fj be traversals of two different paths Pi and Pj , respectively, in a graph G within some
time t. We say that the traversals fi and fj do not collide with each other within time t if,

• for every times x, x′≤ t, the following holds: if fi(x)= fj(x
′) then x 6=x′ (i.e., if the same vertex

is visited by paths Pi and Pj , then it should be visited at different times — no two agents can be
at the same location at the same time);

• for every time x<t, the following holds: if fi(x)= fj(x+1) then fi(x+1) 6= fj(x) (i.e., an edge
cannot be visited by paths Pi and Pj in reverse directions at the same time — no two agents can
swap their locations at the same time).

MAPF problem can be defined as in Figure 1. A MAPF instance can be characterized by a sextuple
〈A,G, init, goal, O, τ〉, and its solution by a collection 〈P, f〉A of pairs of paths Pi and their traversals
fi(Pi) within some time u≤τ for agents ai in A.

For a path P = 〈v1, . . . , vn〉 and its traversal f(P ) within time u, and a nonnegative integer k≤u,
the k-suffix of P with respect to f (denoted P k,f ) is the subsequence 〈vi, . . . , vn〉 such that vi = f(k).
Intuitively, the k-suffix of a path P describes the part of the path visited after time k (included).

For a collection 〈P, f〉A of pairs of paths and their traversals, we denote by Pk,f
A the collection of

k-suffixes of paths in PA with respect to their traversals in 〈P, f〉A.

Let us now define the R-MAPF problem as in Figure 2, subject to the obstacle assumption:

The currently observed obstacles are not on the paths of the existing agents.

Note that the obstacle assumption is not restrictive, since the existing agents whose paths go through the
new obstacles can be considered as new agents. This assumption is considered to make the definition
easier to follow.
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MAPF Problem

Input:
• A nonempty set A= {a1, . . . , an} of agents (n> 0).
• A graph G = (V,E) (to describe an environment where the agents move around).
• A function init : A 7→ V (to describe the initial locations of agents).
• A function goal : A 7→ V (to describe the goal locations of agents).
• A set O⊆V (to denote the obstacles in the environment).
• A positive integer τ (to specify the maximum makespan—plan length).

Output: For every agent ai ∈ A, for some positive integer u≤ τ ,
• a path Pi = 〈wi,1, . . . , wi,ni

〉 of length ni (ni≤u)
– that the agent ai will follow to reach its goal location from its initial location (i.e.,
wi,1=init(ai) and wi,ni

=goal(ai)),

– without colliding with any obstacles (i.e., wi,j ∈ V \O), and

• a traversal fi of the path Pi within time u, such that
– for every other agent aj ∈Awith a path Pj and its traversal fj within u, fi(Pi) and fj(Pj)

do not collide with each other.

Figure 1: MAPF problem definition.

R-MAPF Problem

Input:
• A MAPF instance 〈A,G, init, goal, O, τ〉 (G = (V,E)), with a solution 〈P, f〉A.
• A nonnegative integer k < τ (to denote the current time).
• A nonempty subset A↑⊆A of agents (who leave the environment by time k).
• A nonempty set A↓ (A↓ 6=A) of new agents (who join the remaining team A \A↑ at time k).
• A function init↓ : A↓ 7→ V (to describe the initial locations of the new agents).
• A function goal↓ : A↓ 7→ V (to describe the goal locations of the new agents).
• A set O↓ of current obstacles (as observed at time k) that do not occupy any vertices of paths

in P.

Output:
• For the new agents (i.e., A↓): A collection 〈Pnew, fnew〉A↓ of pairs of paths

and their traversals within time τ−k+1, such that 〈Pnew, fnew〉A↓ is a solution for
〈G,A↓, init↓, goal↓, O↓, τ−k+1〉.

• For the other agents (i.e., A \A↑): A collection 〈Pk,f , f ′〉A \A↑ of pairs of the k-suffixes P k,f

of their paths P ∈ P, and their new traversals f ′(P k,f ) within time τ−k+1 that do not collide
with each other or the traversal fnew of a new agent’s path.

Figure 2: R-MAPF problem definition.

R-MAPF takes as input the current locations and goal locations of the new agents, the updated
environment, and the MAPF instance and solution for the existing agents. It aims to find a solution
that revises the traversals of the paths of the existing agents, and augments with new paths and their
traversals for the new agents. Meanwhile, it ensures that no agent collides with the obstacles or the
other agents, and it respects the original maximum makespan.
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3 Solving D-MAPF using ASP
Since the agents do not disappear once they reach their locations, R-MAPF may not be always solvable
even when the corresponding D-MAPF is solvable [31]. For that reason, we introduce an algorithm for
D-MAPF, based on our solution to R-MAPF using ASP.

3.1 Our Algorithm
D-MAPF takes as input (as in R-MAPF) the current locations and goal locations of the new agents,
the updated environment, and the MAPF instance and solution for the existing agents. It aims to find a
solution (as in MAPF) that consists of paths and their traversals for all current agents, ensuring that no
agent collides with the obstacles or the other agents, and respecting the original maximum makespan.
Note that D-MAPF is more general than R-MAPF since it does not require the re-use of the existing
paths. Therefore, a solution to R-MAPF is a solution to D-MAPF, but a solution to D-MAPF (e.g.,
found by replanning) may not be a solution to R-MAPF.

Our solution is based on the formalization of R-MAPF, subject to the obstacle assumption, as an
ASP program. According to this ASP program, the waiting times of the existing agents are scheduled
relative to their paths within a given makespan, while paths and their traversals are computed for the new
agents within that given makespan. Meanwhile, it is ensured that there are no collisions with obstacles
or between robots.

Our algorithm for D-MAPF utilizes the ASP formalization of R-MAPF as follows.
1. During the execution of a given MAPF plan according its traversal, if a new obstacle is detected

that is on the path of an existing agent, then that agent is considered as a new agent along with
other new joining agents. This step ensures that the obstacle assumption is satisfied.

2. A solution to R-MAPF, subject to the obstacle assumption, is computed using the ASP program
with an ASP solver, like CLINGO [9], within the makespan of the given MAPF plan.

3. If a solution cannot be found, the algorithm tries to find a solution to R-MAPF by increasing the
makespan incrementally until the given maximum makespan is reached.

4. If a solution still cannot be found, then the algorithm applies replanning: it solves MAPF for all
agents by minimizing the maximum makespan.

Figures 3–6 present an example to illustrate the overall idea.

3.2 ASP Formalization of R-MAPF
Let us describe our ASP program that formalizes R-MAPF. We refer the reader to relevant sources [12,
1, 11] for the syntax and semantics of programs in ASP. In the following, we use the mathematical
representation of programs, so the lowercase letters (in the arguments of predicates) denote schematic
variables, whereas the uppercase letters denote constants.

Notation. Consider the following notation about the input:

• the roads in the environment (viewed as a graph G) are described by atoms of the form edge(x, y)
— there is a road from location x to location y;

• a MAPF solution (i.e., the plan being executed) is described by atoms of the form path(a, t, x)
— existing agent a is expected to be at location x at time step t;

• the maximum makespan of the MAPF plan being executed is T ;
• the current time step is K;
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Figure 3: Initially, two agents are at A1 and A2; their goals are to reach A1′ and A2′.

Figure 4: A solution to MAPF instance described in Fig. 3: A1 starts at 1, moves to 2, 3, 6, and reaches
9; and A2 starts at 3, moves to 6, 5, 4, reaches 7.

Figure 5: While executing the plan shown in Fig. 4, at time step t = 1, another agent A3 joins the team
with goal A3′. A solution to this D-MAPF instance is computed, and a path for A3 is found, as shown
above: A1 is at 2, moves to 3, 6, 9; A2 is at 6, moves to 5, 4, 7; A3 starts at 9, moves to 6, 5, 2.

Figure 6: While executing the plan shown in Fig. 5, at time step t = 2, another agent A4 joins the team
with goal A4′ . A solution to this D-MAPF instance is computed. No solution is found with t = 4,
so the makespan is increased by 1. The new solution with makespan t = 5 is found by scheduling the
waiting times of A1, A2 and A3, and by computing a path for A4, as shown above: A1 is at 3, waits at
3, then moves to 6,9; A2 is at 5, waits at 5, then moves to 4,7; A3 is at 6, waits at 6, then moves to 5,2;
A4 starts at 7, moves to 4, 1, and waits at 1.

• the vertices x occupied by obstacles observed at time step K are described by atoms of the form
obstacle(x);

• the initial and the goal location for every new agent a joining the team at time stepK are described
by atoms of the forms init(a, x) and goal(a, x), respectively.
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Revise the plans for existing agents. Potential waiting schedules for existing agents are generated
over the rest of their plans starting from their current positions, to obtain new traversals of the remaining
parts of their paths.

First, the current and the goal locations of every existing agent a ∈ (A \A↑) are identified:

goal(a, x)← path(a, T, x) (a ∈ (A \A↑)).
init(a, x)← path(a,K, x) (a ∈ (A \A↑)).

Suppose that the new plan is described by atoms of the form plan new(a, t, x). A new plan for every
existing agent a ∈ (A \A↑) then should start at its current location at time K:

plan new(a,K, x)← init(a, x) (a ∈ (A \A↑)).

At every time step t−1 (K≤t−1≤T−1), every existing agent a may either wait at its location x, or
move to the next location y (visited after x) according to its existing path:

1{plan new(a, t, x); plan new(a, t, y) : path(a, t1, y), path(a, t1−1, x), edge(x, y),K≤t1}1←
plan new(a, t−1, x) (a ∈ (A \A↑),K+1≤t≤T ).

Note that the paths of the existing agents are utilized inside the choice rules and thus lead to more
intelligent generation of new traversals, compared to the straightforward approach of generating many
new plans and then eliminating the ones that do not characterize traversals of existing paths. In that
sense, this is a novel and elegant contribution from the modeling perspective.

As new traversals are generated, we can add the MAPF plan of existing agents as a constraint to
generate a different waiting schedule for them.

Augment with plans for new agents. For every new agent a ∈ A↓, plans are generated recursively
as suggested by [8]:

plan new(a,K, x)← init(a, x) (a ∈ A↓).
1{plan new(a, t, x); plan new(a, t, y) : edge(x, y)}1←

plan new(a, t−1, x). (a ∈ A↓,K+1≤t≤T )

These new plans, described by atoms of the form plan new(a, t, x) for every agent a, should char-
acterize paths. Due to the cardinality constraint above, there is an outgoing edge from their initial
locations.

There should be an incoming edge to their goals to make sure every agent reaches its goal:

← {plan new(a, t, y) : edge(x, y), goal(a, y)}0 (a ∈ A↓,K+1≤t≤T ).

To ensure that the plan of a new agent a ends at the goal, i.e., there is no outgoing edge from the
goal, we further add the following constraints:

← plan new(a, t, x), plan new(a, t+1, y), edge(x, y), goal(a, x) (a ∈ A↓,K≤t≤T ).

No collisions. Now that we have generated new plans for all agents, that characterize paths, we need
to ensure that there are no collisions.

No two agents a1 and a2 are at the same vertex x at the same time t.

← plan new(a1, t, x), plan new(a2, t, x) (a1 6=a2,K≤t≤T ).

59



Dynamic Multi-Agent Path Finding Bogatarkan, Patoglu, and Erdem

No two agents a1 and a2 swap their locations at the same time.

← edge(x, y), plan new(a1, t, x), plan new(a2, t, y),
plan new(a1, t−1, y), plan new(a2, t−1, x) (a1 6=a2,K+1≤t<T ).

No agent a visits a vertex x containing an obstacle:

← plan new(a, t, x), obstacle(x) (K≤t≤T ).

Optimizations. While revising the existing plans and augmenting new plans, our formulation takes
into account an upper bound for the makespan, so as to minimize the makespan in our algorithm for
D-MAPF. We can consider further optimizations. For instance, with the following weak constraints,
total waiting time (for all agents a) can be minimized:

∼←− plan new(a, t, x), plan new(a, t+1, x), not goal(a, x).[1@1, a, t]

4 Experimental Evaluations
We have implemented our D-MAPF algorithm described in Section 3.1, based on the ASP formalization
of R-MAPF explained in Section 3.2, using Python 2.7.3 and CLINGO 4.5.4, and performed experiments
on a Linux server with dual 2.4 GHz Intel E5-2665 CPUs and 64 GB memory. Recall that our algorithm
tries to re-use the plans of the existing agents by scheduling their waiting times, to allow the new agents
to reach their destinations.

We have compared our algorithm that makes use of the previously computed plans with the replan-
ning approach that computes new plans for all agents, by means of some experiments, to observe the
trade-off between computation time and solution quality. Recall that in the replanning approach, when
some changes are noticed in the team or the environment, a new MAPF instance is created by the cur-
rent locations and goal locations of both the existing and the new agents, and the updated environment,
and a solution is computed for this instance. If no solution is found, then the makespan is incremented
as in our algorithm until the given maximum makespan.

Note that replanning does not re-use the plans of the existing agents, so we expect to observe from
our experiments that the replanning approach may not be computationally as time-efficient as our algo-
rithm. On the other hand, our algorithm tries to re-use the paths of the existing agents, so we expect to
observe that the quality of solutions (characterized by their makespans) computed by our algorithm may
not be as good as the quality of solutions computed by the replanning approach. Let us investigate these
questions.

For experimental evaluations, we have generated random MAPF instances over various grid sizes
for 20 agents: 10×10, 20×20, 30×30, 40×40, 50×50. For each MAPF instance, we have computed
a solution whose makespan is smaller than some given value less than T . Then, we have generated
D-MAPF instances, by extending the team with 1–5 new agents. For convenience, it is assumed that
each agent is added at time t = 0, and there are no obstacles. The results are presented in Table 1.

Computation time vs. makespan. Let us consider the D-MAPF instance on a grid of size 10 × 10,
which starts with a MAPF solution of makespan 18, and 1 new agent joins the team. For this D-
MAPF instance, a new solution is computed by our algorithm in 0.200 seconds, whereas a new solution
is computed by the replanning approach in 2.710 seconds. When 2 agents join the team, then our
algorithm cannot find a new solution with makespan 18; it takes 0.250 seconds for our algorithm to
terminate without any solution. Then our algorithm increases the makespan to 19, and computes a new
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Table 1: Experimental evaluations: Our algorithm vs. Replanning.

Initial # of new Our algorithm Replanning
instance agents CPU time [s] Found [Y/N] CPU time [s] Found [Y/N]

1 0.200 Y 2.710 Y
2 0.250 N 2.810 Y
2 0.290 Y (19) 3.260 Y

20 agents 3 0.330 N 3.160 Y
10× 10 grid 3 0.420 Y (19) 3.910 Y
18 makespan 4 0.400 N 3.180 Y

4 0.480 Y (19) 3.750 Y
5 0.490 N 3.710 Y
5 0.580 Y (19) 4.530 Y
1 1.510 Y 32.660 Y

20 agents 2 2.490 Y 38.540 Y
20× 20 grid 3 3.450 Y 32.180 Y
38 makespan 4 4.510 Y 49.680 Y

5 5.350 Y 43.490 Y
1 1.670 Y 38.600 Y

20 agents 2 2.820 Y 34.390 Y
20× 20 grid 3 4.300 Y 42.140 Y
40 makespan 4 4.980 Y 41.550 Y

5 5.970 Y 52.660 Y
1 7.200 Y 112.290 Y

20 agents 2 8.540 Y 110.800 Y
30× 30 grid 3 11.860 Y 123.400 Y
58 makespan 4 15.370 Y 103.630 Y

5 15.430 Y 119.790 Y
1 4.630 Y 96.430 Y

20 agents 2 7.970 Y 114.740 Y
30× 30 grid 3 10.880 Y 134.320 Y
60 makespan 4 14.090 Y 141.300 Y

5 14.020 Y 146.720 Y
1 12.480 Y 280.710 Y

20 agents 2 25.180 Y 348.930 Y
40× 40 grid 3 35.460 Y 335.320 Y
78 makespan 4 50.670 Y 398.460 Y

5 63.530 Y 344.470 Y
1 14.100 Y 261.290 Y

20 agents 2 25.960 Y 467.840 Y
40× 40 grid 3 39.010 Y 371.400 Y
80 makespan 4 58.530 Y 395.510 Y

5 63.090 Y 443.040 Y
1 19.990 Y 510.570 Y

20 agents 2 40.920 Y 493.590 Y
50× 50 grid 3 55.150 Y 577.660 Y
98 makespan 4 72.120 Y 681.480 Y

5 93.780 Y 587.230 Y
1 18.800 Y 737.070 Y

20 agents 2 32.630 Y 545.840 Y
50× 50 grid 3 46.820 Y 1150.140 Y

100 makespan 4 63.770 Y 753.140 Y
5 85.330 Y 774.070 Y
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solution with makespan 19 in 0.290 seconds. Meanwhile, when two agents join the team, the replanning
approach finds a new solution with makespan 18 in 2.810 seconds.

From these results, we observe the strengths and the weaknesses of our approach (as expected),
showing the trade-off between computation time and solution quality. Our algorithm finds solutions
significantly faster than the replanning approach. On the other hand, the replanning approach may find
solutions with slightly shorter makespans.

Computation times vs. number of new agents. Let us now consider the D-MAPF instance on a grid
of size 50× 50, which starts with a MAPF solution of makespan 98. When 1 new agent joins the team,
our algorithm computes a solution with makespan 98 in 19.990 seconds (reusing the existing MAPF
solution) whereas the replanning approach takes 510.570 seconds since it has to plan for every agent.
When 2 agents join, our approach computes a solution with makespan 98 in 40.920 seconds, whereas
the replanning approach takes 493.590 seconds. When 4 agents join, our approach computes a solution
with makespan 98 in 72.120 seconds, whereas the replanning approach takes 681.480 seconds.

From these results, we observe that the underlying idea of reusing existing solutions may be quite
efficient in terms of computation time, in particular, when the number of existing agents is much larger
than the number of new agents.

As more agents join the team, the computation times increase in general for both approaches. The
growth rate of the computation time of our algorithm is greater than that of the replanning approach.
This observation is not surprising: Since our algorithm computes new paths and their traversals for the
new agents, the computation time increases as the number of new agents increases; since the replanning
approach computes new paths and their traversals for all agents, the computation time increases as the
number of all agents increases. The increase in the number of new agents is larger than the increase in
the number of all agents.

Computation times vs. grid sizes. Finally, let us also consider the scalability of these two approaches
as the grid gets larger. We can observe from the experimental results that the computation times increase
for both approaches, and that the growth rates are similar.

Larger instances with obstacles. It is important to note that the results illustrate the usefulness of our
revise and augment approach (i.e., solving R-MAPF as part of our algorithm for D-MAPF): for most
of the instances, no replanning is done as part of D-MAPF algorithm (i.e., Step 4 of the algorithm) if
we allow a slight increase of the maximum makespan.

These observations do not change even when we increase the number of new agents (e.g., when
50% more agents join the team) and/or include obstacles on the grid (e.g., where 4 blocks of 4x4 square
obstacles are placed on a grid of size 20x20 as in Figure 7(a), or a large cross obstacle placed on a grid
of size 20x20 dividing the grid into 4 rooms with narrow door passages in between as in Figure 7(b)),
as can be seen in Table 2.

Similar observations can be made in Table 3 for instances with more obstacles (e.g., where 30 blocks
of 2x2 square obstacles are placed on a grid of size 20x20 as in Figure 7(c), or a large cross obstacle
with narrow door passages and 20 blocks of 2x2 obstacles are randomly placed on a grid of size 20x20
as in Figure 7(d)).

Note that our experiments involve relatively large instances (in terms of grid size, number of agents,
and obstacle occupancy) comparable with the ones reported in the related work. For instance, the evalu-
ation of online MAPF [31] is performed over grids of sizes 3x5 (with at most 30% obstacle occupancy)
and 3x10 (with at most 40% obstacle occupancy) with 10–25 new agents, and a grid of size 16x16 (with
39 % obstacle occupancy) with 60–70 new agents.
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(a) 4 uniformly placed 4x4 obstacles (c) 30 randomly distributed 2x2 obstacles (d) Cross obstacle with narrow passages
and 20 randomly distributed 2x2 obstacles

(b) Cross obstacle with narrow passages

Figure 7: Four different environments (grids of size 20x20) used in our experiments: (a) 4 blocks of
4x4 square obstacles are placed on the grid, (b) a large cross obstacle is placed on the grid dividing it
into 4 rooms with narrow door passages in between, (c) 30 blocks of 2x2 square obstacles are randomly
placed on the grid, (d) both a large cross with narrow passages and 20 blocks of 2x2 square obstacles
are placed on the grid.

Table 2: Experimental results on a 20x20 grid without obstacles, with block obstacles as in Figure 7(a),
and with a cross obstacle as in Figure 7(b).

Initial
instances

MAPF
Makespan

# of
New agents

no obstacle block obstacles cross obstacle
makespan time (s) makespan time (s) makespan time (s)

20 x 20 grid
20 agents 36

2 38 16.784 38 16.995 38 17.234
4 38 52.963 38 56.650 38 54.589
6 38 99.363 38 117.534 38 107.296
8 38 161.680 38 177.387 38 185.088

10 38 240.157 38 257.768 38 269.664

20 x 20 grid
30 agents 36

2 38 21.780 38 23.150 38 24.629
4 38 68.159 38 69.294 38 75.503
6 38 119.183 38 124.589 38 135.194
8 38 190.121 38 208.926 38 196.780

10 38 273.019 39 416.618 39 467.090

Further remarks on reusability of existing plans. Recall that the main motivation of our revise
and augment algorithm for D-MAPF is to be able to reuse the existing plans while trying to keep the
makespan as small as possible. For that purpose, we can try to minimize the waiting time for each
existing agent so that they do not lengthen the traversals of their paths and thus the makespan. With

Table 3: Experimental results with more obstacles as in Figures 7(c) and (d).

Initial
Instances

# of
New Agents

30 randomly distributed 2x2 obstacles Cross with 20 random 2x2 obstacles
MAPF makespan time(s) MAPF makespan time(s)

20x20
20 agents

2

32

32 5.345

25

25 5.201
4 32 10.826 25 7.468
6 32 33.166 25 11.609
8 32 53.223 25 29.007

10 32 82.527 25 44.907

20x20
30 agents

2

32

32 7.143

25

25 5.118
4 32 19.062 26 19.553
6 32 40.716 26 37.548
8 32 63.402 26 74.474

10 32 97.442 26 112.574

63



Dynamic Multi-Agent Path Finding Bogatarkan, Patoglu, and Erdem

such an optimization, as in the results discussed above, we observe in Table 4 that the reusability of
existing plans is high (i.e., the makespan does not change in most of the cases) and the percentage of
change in the total plan length is small. Despite no change in the makespan and small changes in the
total plan length, note that D-MAPF instances still require revisions of existing plans.

Table 4: Change in the total plan length of the existing agents.

# of
New Agents

10x10 grid 20x20 grid 30x30 grid 50x50 grid
20 agents 30 agents 20 agents 30 agents 20 agents 30 agents 20 agents 30 agents

1 -2.25% 0.41% -1.53% 3.42% 0.44% 2.67% 0.67% 0.45%
2 3.13% 1.67% 0.14% 3.70% 0.00% 2.32% 0.83% 0.79%
3 -1.25% 2.29% 1.53% 4.07% 0.09% 1.42% 1.51% -0.20%
4 3.44% 3.34% 0.97% 3.79% -0.44% 2.20% 0.78% 0.41%
5 3.44% 3.96% 0.69% 3.89% -0.80% 2.26% 0.88% 0.41%

5 Related Work
There are several problems that are related to D-MAPF, although they are different in general.

MAPF. There are mainly two kinds of MAPF solvers: some of them use search-based problem solv-
ing (mostly based on a variant of A* search), and some of them use declarative problem solving.

For instance, Silver [27] introduces an incremental method where the paths of agents are computed
one by one with A* [13]; once a path is found for an agent, it is considered as an obstacle for other
agents. Luna and Bekris [18] propose to compute the paths of agents independently, and then resolve
the conflicts (i.e., when two agents collide with each other) with respect to some push-and-swap rules
(e.g., there should be at least two free vertices in the graph). Chouhan and Niyogi [5, 4] propose a
similar solution where the paths are computed independently; but the conflicts are resolved differently
by assigning priorities to agents. Other search-based algorithms, like [7, 32, 15], also compute paths
independently; in case a collision occurs, it is resolved by replanning one of the conflicting agents’
route. Sharon et al. [26] propose a different method that performs a search on a tree based on the
conflicts between agents.

The declarative methods reduce MAPF to some formalisms (e.g., ILP, SAT, ASP) and use general
problem solvers to find plans. Yu and Lavalle [34] model MAPF as a network flow problem and use an
ILP solver to optimize the makespan (the time when the last robot reaches its goal) or the distance (the
total distance traveled by all robots). Surynek et al. [29, 30] reduce MAPF to SAT and use a SAT solver
to optimize the makespan or the sum of costs. Erdem et al. [8] model MAPF as a logic program and
use an ASP solver to optimize the makespan or the distance.

Considering that part of D-MAPF includes MAPF, it is not surprising that our ASP-based solution
for D-MAPF builds upon Erdem et al.’s ASP-based solution for MAPF, for computing paths for the
new agents. Though, the idea of replanning the waiting times of existing agents and the part of our ASP
program that decides which existing agent should wait for how long and where meanwhile, are novel.

MAPF-POST. Hoenig et al. [14] study a simpler problem (called MAPF-POST, and solved in poly-
nomial time) to postprocess MAPF solutions before execution: given a solution for MAPF (i.e., paths
of the robots), the goal is to schedule the moves of robots according to their kinematic constraints, like
velocity, to avoid collisions between robots, subject to the assumptions that the agents follow their paths
and they visit common locations in the same order as suggested by their paths. For instance, suppose
that a vertex v is visited by two robots r1 and r2, and v is the second vertex in the path of r1 and the
fifth vertex in the path of r2. While scheduling the moves of these robots, MAPF-POST ensures that
r1 visits v before r2.

64



Dynamic Multi-Agent Path Finding Bogatarkan, Patoglu, and Erdem

D-MAPF (thus our ASP-based solution) is similar in that it schedules the waiting times of the
existing agents. On the other hand, it does not pose a constraint about the latter assumption, so an
existing agent does not have to visit a location before another existing agent although their paths suggest
otherwise. For instance, in the example above, it is not required that r1 visits v before r2.

TAPF and G-TAPF. Target Assignment and Path Finding problems (TAPF and G-TAPF) [19, 23]
are variants of MAPF: they aim to partition the agents into teams of agents, assign some goals to
each team, and solve MAPF. Although this problem is different, Nguyen et al.’s solution to G-TAPF
is related since it also utilizes ASP in the spirit of Erdem et al.’s [8] solution for MAPF. However,
like Erdem et al.’s [8] solution, Nguyen et al.’s solution to G-TAPF do not consider changes in the
environment. Our solution for D-MAPF does.

MAPD. Like TAPF and G-TAPF, Multi-Agent Pickup and Delivery (MAPD) [20] also involves
assignment of tasks (i.e., pick up and delivery) to agents but over time, so it requires an online solution.
While MAPD has a dynamic aspect of emerging new tasks, it does not allow the team or environment
to change (e.g., no existing agent leaves, no new agent joins, no new obstacle appears). On the other
hand, D-MAPF allows for changes in the team or environment, but does not allow new tasks over time.

Online MAPF. Online MAPF [31] considers the addition of new agents to the team while a plan is
being executed, but no other changes in the team or environment (e.g., no existing agent leaves, no new
obstacle appears). Moreover, it is assumed that agents disappear when they reach their goal and that
new agents may wait before entering their initial location in the environment. These assumptions relax
the D-MAPF problem: the new agents may enter the environment one at a time, and they provide more
space for the other agents when they disappear.

To solve online MAPF with these assumptions, Svancara et al. investigate algorithms that rely
on replanning (e.g., for all agents) and conflict-resolution (e.g., planning for the new agents one at a
time ignoring others, and then resolving conflicts by replanning). Our approach does not accommodate
such assumptions and tries to find a solution for D-MAPF by revising the schedules of the plans of
existing agents while augmenting the plans of new agents; replanning is triggered only when revising
and augmenting is not sufficient to find a solution.

6 Conclusion

While executing a MAPF plan in a dynamic environment, new agents may join the team whereas some
may leave, and the environment may change by new obstacles. In such cases, we need to solve a
variation of MAPF, which we call D-MAPF.

We have proposed a declarative solution to D-MAPF, based on the idea of re-using the existing
solution for MAPF (i.e., re-using the paths of the existing agents and scheduling their waiting times to
obtain their new traversals, instead of computing new paths and traversals for them) while computing
new plans for the new agents. We have realized this method using advantages of ASP: the guidance
provided by the generate-and-test representation methodology, the special constructs and capabilities
(such as aggregates, weak constraints, choice rules, and recursive definitions), and the efficient ASP
solver CLINGO.

We have observed from the results of experiments that the underlying idea of our proposed method
(i.e., revising and augmenting the plan being executed) improves the computational efficiency in timings
significantly compared to replanning, and is promising for further investigations.
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