
EPiC Series in Computing

Volume 39, 2016, Pages 169–182

SCSS 2016. 7th International Symposium on
Symbolic Computation in Software Science

Bit-size reduction of triangular sets in two and three

variables

Yamashita Tetsuro1 and Dahan Xavier2∗†

1 Fujitsu company
2 Faculty of General Educational Research, Ochanomizu University, Tokyo, JAPAN.

xdahan@gmail.com

Abstract

At ISSAC 2004 [4] was introduced a transformation of a triangular lexicographic Gröbner basis

generating a radical ideal of dimension zero, to a triangular family of polynomials generating the same

ideal, which is no more a Gröbner basis but has significantly smaller coefficients in term of bit-size.

We attempt in this article to extend this transformation to triangular sets that do not generate a

radical ideal. We manage to treat the case of n = 2 variables, and in some extent the case of n = 3

variables. It resorts to an extra operation, the squarefree factorization; nevertheless this operation

based on gcd benefits of efficient algorithms. When the number of variables n is greater than 2, more

serious difficulties occur and are discussed for n = 3. An implementation in Maple in the case n = 2

confirms the expected reduction of the bit-size coefficients.

1 Introduction

A reduced lexicographic Gröbner basis for the monomial order x1 ≺ x2 ≺ · · · ≺ xn over a
field K is triangular if all of its polynomials have a leading monomial that is a pure power of a
variable, which are all pairwise distinct. It implies that the basis is a regular sequence. When
there are n polynomials T1, T2, . . . , Tn in such a Gröbner basis, and they are assumed to be
ordered so that lm(T1) ≺ lm(T2) ≺ · · · it can be written as:

T

Tn(x1, x2, . . . , xn−1, xn) = xdn
n + an,n−1(x1, . . . , xn − 1)x

dn−1

n · · ·

Tn−1(x1, . . . , xn−1) = x
dn−1

n−1 + · · ·
...

T1(x1) = xd1

1 + · · ·

, (1)

where · · · stands for lower terms for ≺. It is common to call such a family triangular sets.
Such simple data structures are at the core of the triangular decomposition method (see [8,

∗Commissioned by “Strategic Information and Communications R&D Promotion Programme (SCOPE), No.
0159-0016” Ministry of Internal Affairs and Communications, JAPAN.

†And supported by Kakenhi research grant No.15K16003

J.H.Davenport and F.Ghourabi (eds.), SCSS 2016 (EPiC Series in Computing, vol. 39), pp. 169–182

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

1, 2, 7] among many others) to solve and manipulate polynomial systems. Note that within
the assumptions made, i.e. a finite number of solutions, monic polynomials as those in (1)
naturally appear, or, if not, a mere inversion in the base field K allows to reduce to monic
polynomials. We focus mainly on the case of K = Q or K = Fp (see “Motivation” below). The
transformation introduced in [4]

T1 → N1, Ti → Ni :=

(

i−1
∏

ℓ=1

∂Tℓ

∂xℓ

)

Ti mod (T1, . . . , Ti−1), (2)

allows to compute at a cheap cost polynomials with smaller coefficients. More precisely, the
former has coefficients bit-size that grows at most in O(d2n) where d =

∏

i degxi
(Ti), whereas

the latter has coefficients bit-size that grows at most in O(dn). The two ideals 〈T1, . . . , Tn〉 and
〈N1, . . . , Nn〉 are equal but the second family is no longer a Gröbner basis. Such a transformation
is implemented in Maple in the RegularChains library under the name DahanSchostTransform.

Motivation Despite not Gröbner bases, those families of polynomials find applications in
modular methods, where instead of lifting the coefficients of Ti, we lift the coefficients of Ni

which saves a significant amount of time. The figure below displays the concept of a modular
method for a triangular decomposition. Instead of lifting directly the triangular sets modulo p

denoted t(i) = (t
(i)
1 (x1), t

(i)
2 (x1, x2), . . . , t

(i)
n (x1, . . . , xn)) in the figure below, it is more efficient

to transform them into the polynomial families n(i) = (n
(i)
1 (x1), . . . , n

(i)
n (x1, . . . , xn)) modulo p

by the operation (2), and then to lift them to polynomial systems N(i) over Q. This strategy is
put into practice in [3] with precise complexity analysis, and implemented in the RegularChains
library in Maple under the command name EquiprojectableDecomposition.

Input : Square
system F over Q

Triangularize over Q

large coefficients
appear → costly

//❴❴❴❴❴❴❴❴

Reduction modulo p
of the coefficients

��

Output: Triangular

sets T(1), . . . ,T(s)

defined over Q

76 54

01 23

Polynomial systems

N(1), . . . ,N(s) over Q
defined in this article

transformation

simple, costlessoo

Square system
F mod p over Fp

Triangularize
modulo p

(small coefficients)
//

Triangular sets
t(1), . . . , t(s)

T(i) mod p ≡ t(i)

Lifting
(Newton−Hensel operator)

O�
O�

OO
O�
O�

simple, costless

transformation
//

76 54

01 23

Polynomial systems
n(1), . . . ,n(s) over Fp

defined in this article

Lifting
(smaller coefficients

than those of T(i))
O�

OO
O�

Figure 1: Prototype of a modular method modulo p to triangularize a polynomial system F having a

finite number of solutions to a family of s triangular sets T
(1), . . . ,T(s) (each of them is of the form

T
(i) = (T

(i)
1 (x1), T

(i)
2 (x1, x2), . . . , T

(i)
n (x1, . . . , xn))). Instead of lifting directly the coefficients of the

triangular sets t
(i) as shown in the second column, transformation to the family of systems n

(i) is

performed before lifting the smaller coefficients, as shown in the third column (see [3] for details).

As we will see below, some “interpolation” formula appearing in Theorems 1, 2 and Propo-
sitions 1, 3 require that the field K is large enough: it is always enough to suppose that |K|
verifies, with notations introduced later, that |K| > degx(T1) degy(T2)[degz(T3)] = d1d2[d3].

When the polynomial system (1) does not generate a radical ideal, the formula (2) does not

apply since
∏i−1

ℓ=1
∂Tℓ

∂xℓ
is no more necessarily invertible modulo 〈T1, . . . , Ti−1〉. In this paper,

we extend those results to the simplest cases of n = 2 and to some extent n = 3 variables, as
well as discussing the obstacles that prevent to consider a complete generalization to several
variables.

170

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

Previous work We emphasize here that our aim is a simple, algorithmically efficient formula
to transform a system of type (1) to another triangular family of polynomials generating the
same ideal, but with smaller coefficients. We are thus not interested by removing multiplicities,
and the present work is not related to squarefree decomposition algorithms modulo a triangular
set that aim to remove multiplicity like in [5].

Triangular decomposition algorithms indeed are not ideal-theoretic, but set-theoretic ones,
therefore they do not necessarily represent the same ideal as the input system; the set of
solutions is the same (or just almost the same in the case of regular chains). A first obstacle to
represent non-radical ideals by triangular sets is that it is not always possible. But even when
the ideal can be represented, in a broad term, by triangular sets, we are not aware of algorithms
that allow to find these sets. As drawn in the conclusion, the reason of this difficulty can be
explained by the lack of gcd algorithm over non-reduced rings of type K[x]/〈x2〉. The results
presented can contribute to understand better what is going on in this situation.

2 Case of two variables

We consider two variables x ≺lex y and two polynomials T1(x) ∈ K[x] and T2(x, y) ∈ K[x, y] \
K[x]. The fact that {T1, T2} is a reduced Gröbner basis of the zero-dimensional ideal that it
generates implies the following elementary facts: T1 is monic in x and T2 is monic in y. Let
d1 = degx(T1) and d2 = degy(T2), and write T2(x, y) = yd2+c1(x)y

d2−1+· · ·+cd2−1(x)y+cd2
(x).

Each polynomial ci ∈ K[x] verifies degx(ci) < d1.

2.1 Review of the radical case

In this paragraph, are briefly recalled the results of [4], valid for a radical ideal only, in the case
of two variables. The radical assumption made there implies the following assumption:

Assumption 1. All the roots of T1 are simple: T1(x) =
∏d1

i=1(x − αi), with αi 6= αj if i 6= j.

Theorem 1. Under Assumption 1, define pi(y) := T2(αi, y) and Mi(x) :=
∏

0<j<d1
j 6=i

(x− αj).

1. T2 can be written as a Lagrange interpolation polynomial:

T2(x, y) =
∑d1

i=1
pi(y)uiMi(x), where ui =

∑

j 6=i

1

αi − αj
. (3)

2. Let N2(x, y) ≡ T ′
1(x) · T2(x, y) mod 〈T1〉 then

N2 =
∑d1

i=1
pi(y)Mi(x). (4)

3. The polynomial N2 verifies: 〈T1, N2〉 = 〈T1, T2〉.

Remark 1. 1. It should be noted that {T1, N2} is not a Gröbner basis.

2. The simplification yielding N2 consists in suppressing the factors ui from the “Lagrange
idempotent” uiMi(x) in Equality (3). This is the reason why coefficients in N2 are usually
smaller than those of T2.

171

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

Example 1. Let T1(x) = (x− a)(x− b) (a 6= b ∈ K). Then T2(x, y) = T2(a, y)
x−a

b−a
+ T2(b, y)

x−b

a−b
holds.

As for N2:

T
′
1T2 = {(x− a) + (x− b)}{ T2(a, y)

x− a

b− a
+ T2(b, y)

x− b

a− b
}

T
′
1T2 ≡ T2(a, y)

(x− a)2

b− a
+ T2(b, y)

(x− b)2

a− b
≡ T2(a, y)(x− a) + T2(b, y)(x− b) mod 〈T1〉

and according to Statement 2 of Theorem 1 N2 = T2(a, y)(x− a) + T2(b, y)(x− b).

2.2 Preliminary toward a generalization to multiple roots

We remove Assumption 1 and consider in this subsection a polynomial T1 having multiple roots:
T1(x) =

∏r
i=1(x − αi)

ei (where αi 6= αj if i 6= j and ei ∈ N>0). The following proposition is a
basic, straightforward application of the Chinese Remaindering Theorem.

Proposition 1. Let pi(x, y) ≡ T2(x, y) mod 〈(x − αi)
ei 〉 and Mi(x) :=

T1(x)
(x−αi)ei

∈ K̄[x]. Note

that degy(pi(y)) = degy(T2(x, y)) = d2. The following assertions are satisfied:

1. There exist ui ∈ K̄[x] such that:
∑r

i=1 uiMi = 1, ui ∈ K̄[x].

2. T2 ≡
∑r

i=1 piuiMi mod 〈T1〉 (or equivalently T2 = nf〈T1〉 (
∑r

i=1 piuiMi)).

Example 2. Given T1 := (x−1)2(x−2)3, let p1 = y+x, p2 = y+x2. To compute T2 from the previous
Proposition, we need M1 = (x − 2)3, M2 = (x − 1)2. The Extended Euclid Algorithm provides the
equality (2−3x)(x−2)3 +(3x2−14x+17)(x−1)2 = 1, so that with u1 = 2−3x, u2 = 3x2−14x+17,
holds u1M1 + u2M2 = 1.

T2 ≡ p1u1M1 + p2u2M2 mod 〈T1〉

≡ (2− 3x)(x− 2)3(y + x) + (3x2 − 14x+ 17)(x− 1)2(y + x
2) mod 〈T1〉

≡ y + 3x6 − 23x5 + 68x4 − 96x3 + 65x2 − 16x mod 〈T1〉

≡ y + x
4 − 7x3 + 19x2 − 20x+ 8 mod 〈T1〉

We can verify that T2 ≡ p1 mod 〈(x− 1)2〉, T2 ≡ p2 mod 〈(x− 2)3〉.

Proposition 2. Let F (x) =
∑r

i=1 Mi(x) ∈ K̄[x], we have:

F (x) · T2(x, y) ≡
∑r

i=1
pi(y)Mi(x) mod 〈T1(x)〉.

Proof. By Proposition 1, T2(x, y) ≡
∑r

i=1 pi(y)ui(x)Mi(x) mod 〈T1(x)〉 holds. Regarding that
∑r

i=1 ui(x)Mi(x) = 1 , we have:

FuiMi =
(

∑r

i=1
Mi

)

uiMi ≡ uiM
2
i ≡ (1−

∑

j 6=i
Mj)Mi ≡Mi mod 〈T1〉.

Therefore, F · T2 ≡ F (
∑r

i=1 piuiMi) ≡
∑r

i=1 pi(FuiMi) ≡
∑r

i=1 piMi mod 〈T1〉.

Corollary 1. Defining N2(x, y) := nf〈T1〉(F (x) · T2(x, y)), holds: 〈T1, T2〉 = 〈T1, N2〉.

Proof. The inclusion 〈T1, T2〉 ⊃ 〈T1, N2〉 is clear.
Since T1 and F are relatively prime, by the extended Euclid algorithm there exists u, v ∈

K̄[x] such that uT1 + vF = 1. Moreover by definition, there exists A ∈ K̄[x, y] such that
N2 = FT2 + AT1. As a result, T2 = uT1T2 + vFT2 = uT1T2 + v(N2 − AT1) ∈ 〈T1, N2〉. Thus
〈T1, T2〉 ⊂ 〈T1, N2〉.

172

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

Remark 2. As in the case of Assumption 1, {T1, N2} is not a Gröbner basis. The fact that
F ∈ K[x] is proved in Lemma 2, showing that N2 ∈ K[x, y] thanks to Corollary 1.

In Example 2 the equation N2 ≡ p1M1 + p2M2 mod 〈T1〉 yields N2 = x3y − 5x2y + 10xy −
7y+ 2x4 − 8x3 +13x2 − 8x. In that toy example, it cannot be told that N2 is simpler than T2.
But if the exponents ei of the factors of T1 are sufficiently large it becomes clear that N2 has
smaller coefficients than those of T2 as shown below.

Example 3. Set T1 = (x− 1)4(x− 2)5 and p1 = y + x, p2 = y + x2. Let us compute T2 and N2.

T2 = y + 20x8 − 254x7 + 1389x6 − 4265x5 + 8030x4 − 9480x3 + 6849x2 − 2768x + 480

N2 = x
5
y − 9x4

y + 36x3
y − 74x2

y + 76xy − 31y + 2x6 − 14x5 + 46x4 − 84x3 + 81x2 − 32x

Remark 3. As under Assumption 1, this is explained by the fact that the factor ui is removed
from T2 in the formula 2. of Proposition 1 to obtain N2.

2.3 Computation of N2 in a special case

According to the previous subsection it is easy to compute N2 if we know the polynomials
Mi =

T1

(x−αi)ei
. It suffices to compute the polynomial F of Proposition 2 and nf〈T1〉(F · T2) to

obtain N2. Unfortunately, to get the polynomials Mis, we are not aware of a simpler method
than factorizing T1, process which can be prohibitive especially over Q. What we have in mind
is a simple formula as in 2. of Theorem 1 to compute N2 from T1, T2. To this end, we first
consider a simpler assumption:

Assumption 2. The roots αi below are pairwise distinct and have same multiplicity e:

T1(x) =
∏r

i=1
(x− αi)

e ∈ K[x].

Lemma 1. Under Assumption 2, let S(x) := sqf(T1(x)) :=
∏r

i=1(x−αi) be the squarefree part
of T1 and let Fe,j(x) :=

∑r
i=1[Mi(x)]

j/e. The following recurrence relation holds:

Fe,1(x) = S′(x), Fe,ℓ+1 = Fe,1 · Fe,ℓ −
S

ℓ
· F ′

e,ℓ (1 ≤ ℓ ≤ e− 1) (5)

In particular, all polynomials Fe,j ∈ K[x].

Proof. By assumption S =
∏r

i=1(x − αi), Fe,ℓ =
∑r

i=1

∏

j 6=i(x − αj)
ℓ. Moreover F ′

e,ℓ =

ℓ
∑r

i=1

∑

k 6=i(
∏

j 6=i(x− αj)
ℓ/x− αk) holds, yielding:

Fe,1 · Fe,ℓ =
∑

i1,i2

(
∏

j 6=i1

(x − αj) ·
∏

j 6=i2

(x− αj)
ℓ) =

∑

i1=i2

∏

j 6=i1

(x − αj)
ℓ+1

+
∑

i1 6=i2

(x− α1)
ℓ+1 · · · (x− αi1)

ℓ · · · (x− αi2) · · · (x − αr)
ℓ+1 = Fe,ℓ+1 +

S

ℓ
· F ′

e,ℓ

which is what we wanted to prove.

Remark 4. This recurrence relation is used to compute F = Fe,e of Proposition 2 from S =
sqf(T1). The latter polynomial is obtained under Assumption 2 simply by taking the e-th root
of T1, and the former polynomial F requires less than O(A log(A) log(log(A))) operations in K
to be computed, where A = (e+ 1)(d1 − e) (see Appendix).

173

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

2.4 General case: need of squarefree factorization

The same multiplicity Assumption 2 is here lifted, and we consider the general case T1 =
∏r

i=1(x− αi)
ei where the roots αi are pairwise distinct. Let

T1 = S1S
2
2 · · ·S

n
n . (6)

be the squarefree decomposition of T1. Recall that this factorization is straightforward to
obtain by e.g. Yun’s squarefree factorization [6, Algorithm 14.21, p. 385] valid in characteristic
zero. Since in the case of char(K) = p > 0 we have assumed |K| large enough, it is also valid
in this case. The squarefree decomposition (6) can be obtained in O(d1 log(d1)

2 log(log(d1)))
operations in K by [6, Theorem 14.23], which is more efficient than computing a complete
factorization of T1 (and far more efficient if char(K) = 0).

Besides, it should be said that the squarefree decomposition has a good behavior under
reduction modulo a prime p. If p is large enough, the squarefree factors over Q correspond
to the one obtained modulo p. This contrasts with the factorization into irreducibles where
Chebotarev’s density theorem [6, § 15.5, page 429] restrict to a given proportion the primes
that yield a good behavior for the reduction modulo p.

Lemma 1 can be applied to each factor S1, S
2
2 , . . . , S

n
n , for which Assumption 2 holds, in

order to compute respective polynomials F1,1, F2,2, . . . , Fn,n.

Lemma 2. The polynomial F of Proposition 2 can be computed from the polynomials Sjs and
the polynomials Fj,j and by the following formula

F =
∑n

j=1
Fj,jT1/S

j
j and F ∈ K[x]. (7)

Proof. Writing Sj
j =

∏

kj
(x − αkj

)j ,

n
∑

j=1

Fj,j
T1

Sj
j

=

n
∑

j=1

∑

kj

Sj
j

(x− αkj
)j

T1

Sj
j

=

n
∑

j=1

∑

kj

T1

(x − αkj
)j

 = F.

Therefore Equation (7) is satisfied. Additionally, by Lemma 2 Fj,j ∈ K[x], and therefore
Fj,j

T1

Sj
j = Fj,j

∏

ℓ 6=j S
ℓ
ℓ ∈ K[x]. Thus F ∈ K[x].

Computing F requires (i) to compute the squarefree decomposition of T1, (ii) for each
squarefree factor Sj , compute the polynomial Fj,j and (iii) use formula of Lemma 2 to obtain
F . The computation of N2 is summarized in Algorithm 1. The complexity estimates on the
right correspond to upper bounds on the number of operations over K, where n the number
of squarefree factors of T1. Details are written in the appendix. The estimates in Steps 7 or 9
dominate the overall cost. Correctness follows from the lemma hereafter:

Lemma 3. Let (S1, S2, · · · , Sn) be the squarefree decomposition of T1 =
∏r

i=1(x − αi)
ei ∈

K[x]. If we apply Lemma 1 successively to S1, S
2
2 , · · · , S

n
n , (instead of T1) then we obtain

F1,1, F2,2, · · · , Fn,n respectively. Regarding the polynomial T2, we have:

N2 ≡

n
∑

j=1

(Fj,jT2 mod 〈Sj
j 〉)
∏

ℓ 6=j

Sℓ
ℓ mod 〈T1〉.

Proof. This is clear from the definition of N2 ≡ FT2 mod 〈T1〉 (Cf. Proposition 2, Corollary 1)
and Lemma 2.

174

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

Algorithm 1: Computation of N2

Data: T1 =
∏r

i=1(x− αi)
ei ∈ K[x], T2 ∈ K[x, y]

Result: N2 ∈ K[x, y].
1 Compute the squarefree decomposition (S1, S2, · · · , Sn) of T1 // O(d1 log(d1)

2 log(log(d1))) ;
2 for 1 ≤ i ≤ n do

3 mi ←− T1/S
i
i , pi ←− T2 mod Si

i // O((n − 1)d2d1 log(nd1) log(log(nd1)));
4 end

5 for 1 ≤ j ≤ n do

6 Use recursive formula (5) to find Fj,j // O(nd1 log(nd1) log(log(nd1)));

7 qj ←− Fj,jpj mod Sj
j // O(nd1d2B log(nd1) log(log(nd1)));

8 end

9 N2 ←−
∑n

k=1 qkmk // O(nd1d2 log(nd1) log(log(nd1)));
10 return N2

3 Attempt of generalizations: case of three variables

The treatment of the case of n = 2 variables relies crucially on the fact that T1 ∈ K[x] admits a
(univariate) squarefree decomposition. This is more complicated for T2 ∈ K[x, y] and we treat
only special cases in this section.

Consider three variables x, y, z ordered as x ≺lex y ≺lex z. We suppose that T = {T1(x) ,
T2(x, y) , T3(x, y, z)} is lexicographic Gröbner basis of the 0-dimensional ideal that it generates.
Thus we have lt(T2) = yd2, lt(T3) = zd3 for integers d2 > 0, d3 > 0.

3.1 Review on the case of a radical ideal in three variables

Assumption 3. Let T1 =
∏d1

i=1(x − αi) (αi ∈ K̄, if i 6= i′ then αi 6= αi′) and T2 ∈ K[x, y]

be such that for 1 ≤ i ≤ d1 T2(αi, y) =
∏d2

j=1(y − βij) (βij ∈ K̄, if j 6= j′then βij 6= βij′) is
satisfied. Then the ideal generated by T1 and T2 is radical.

Theorem 2. 1) Under Assumption 3, we have:

T3(x, y, z) =

d1
∑

i=1

d2
∑

j=1

T3(αi, βij , z)
∏

j′ 6=j

y − βij′

βij − βij′

∏

i′ 6=i

x− α′
i

αi − α′
i

. (8)

2) Define F = dT1

dx , G = ∂T2

∂y . Then the following holds:

F ·G · T3 ≡

d1
∑

i=1

d2
∑

j=1

T3(αi, βij , z)
∏

j′ 6=j

(y − βij′)

∏

i′ 6=i

(x− α′
i) mod 〈T1, T2〉. (9)

3) Defining N3 := nf〈T1,T2〉(F GT3), the ideal equality holds: 〈T1, T2, T3〉 = 〈T1, N2, N3〉.

Remark 5. Since F ∈ K[x], G ∈ K[x, y] we also have N3 ∈ K[x, y].
Moreover, as already noted in the case of two variables in Remarks 1, 3, by comparing T3 and
N3 in (8) and (9) the terms

∏

j′ 6=j
1

βij−βij′

∏

i′ 6=i
1

αi−α′
i
have been removed.

175

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

3.2 Toward generalization

We do not assume that T1, T2, T3 generate a radical ideal anymore. More precisely:

Assumption 4. Let us write T1 =
∏r1

i=1(x − αi)
e (αi ∈ K̄, if i 6= i′ then αi 6= αi′ , e > 0)

in K̄[x]. Concerning T2, for 1 ≤ i ≤ r1, we assume that T2 mod 〈(x − αi)
e〉 is factorized over

K̄[x, y], and that each factor comes with the same multiplicity: T2 ≡

r2
∏

j=1

(y−gi,j(x))
ℓ mod 〈(x−αi)

e〉, (gi,j ∈ K̄[x], and gi,j(x) 6≡ gi,j′(x) mod 〈(x−αi)
e〉 ifj 6= j′).

Remark 6. Under Assumption 4, for any 1 ≤ i ≤ r1, define Mi = T1/(x − αi)
e ∈ K̄[x]. By

Proposition 2, there exists ui ∈ K̄[x] such that
∑r1

i=1 uiMi = 1 and

T2 ≡
∑r1

i=1

(

∏r2

j=1
(y − gij(x))

ℓ
)

uiMi mod 〈T1〉 (in K̄[x, y]).

We need another hypothesis, which was not necessary in the case of two variables (see
Concluding Remarks “Discussion”).

Assumption 5. On top of Assumption 4, suppose additionally

for all 1 ≤ i ≤ r1, when j 6= j′, gcd((x − αi)
e, gij(x)− gij′ (x)) = 1 (in K̄[x]).

Remark 7. This is equivalent to gcd(x− αi, gij(x)− gij′ (x)) = 1, or gij(αi) 6= gij′(αi).

Proposition 3. Under Assumptions 4,5, consider for 1 ≤ i ≤ r1, 1 ≤ j ≤ r2 the notations
gij ,Mi and ui of Remark 6. Define additionally Mij , uij ∈ K̄[x, y] as follows:

Mij ≡
T2

(y − gij)ℓ
mod 〈(x− αi)

e〉, and
∑

j
uijMij ≡ 1 mod 〈(x − αi)

e〉, over K̄[x, y] (10)

Then, by denoting pij ≡ T3 mod 〈(x− αi)
e, (y − gij)

ℓ〉 ∈ K̄[x, y, z], T3 satisfies:

T3(x, y, z) ≡
∑r1

i=1

(

∑r2

j=1
pijuijMij

)

uiMi mod 〈T1, T2〉, (11)

Equivalently T3 = nf〈T1,T2〉

(

∑r1
i=1(

∑r2
j=1 pijuijMij)uiMi

)

.

Proof. Conditions related to Mi and ui were already proved for the case of two variables in the
previous section. Let us construct the polynomials uij ∈ K̄[x, y] satisfying Condition (10).

Denote A = K̄[x]/〈(x − αi)
e〉. By Assumption 5, for all 1 ≤ i ≤ r1, 1 ≤ j′ < j ≤ r2,

polynomials gij(x) − gij′(x) possess inverses in A,

y − gij′ = y − gij + gij − gij′ in A[y]

(gij − gij′)
−1(y − gij′)− (gij − gij′)

−1(y − gij) = 1 in A[y]

from which we get: 〈y−gij(x)〉+〈y−gij′ (x)〉 = 〈1〉 in A[y]. Therefore polynomials uij verifying
Condition (10) exist.

Let us show that Equation (11) holds. For 1 ≤ i ≤ r1, according to the Chinese Remainder-
ing Theorem (CRT) applied to Condition (10) gives: T3 ≡

∑r2
j=1 pijuijMij mod 〈(x−αi)

e, T2〉.

Similarly, the definition of Mi, ui yields again by the CRT: T3 ≡
∑r1

i=1(
∑r2

j=1 pijuijMij)uiMi

mod 〈T1, T2〉 which is Equation (11).

176

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

Example 4. Defining T1 = x2(x− 2)2, T2 = (y − x2)2(y − 1)2, we have:

{

T2 ≡ y2(y − 1)2 mod 〈x2〉
T2 ≡ (y − 4x+ 4)2(y − 1)2 mod 〈(x− 2)2〉

so that Assumption 5 is fulfilled. Define M2 = x2 and M1 = (x− 2)2, as well as:

M12 = y2

M11 = (y − 1)2

M22 = (y − 4x+ 4)2

M21 = (y − 1)2

p11 ≡ z mod 〈M2,M12〉
p12 ≡ z + 1 mod 〈M2,M11〉
p21 ≡ z + x mod 〈M1,M22〉
p22 ≡ z + y mod 〈M1,M21〉

u11 = 1 + 2y
u12 = 3− 2y
u21 = 1

27
(8xy − 18y − 32x+ 75)

u22 = 1
27
(−8xy + 18y + 1)

Thus, for 1 ≤ i ≤ 2,
∑

1≤j≤2 uijMij ≡ 1 mod 〈Mi〉 hold. From these data, Proposition 3 gives:

T3 ≡
∑2

i=1
uiMi(

∑2

j=1
pijuijMij) mod 〈T1, T2〉

≡ u1M2(p11u11M12 + p12u12M11) + u2M1(p21u21M22 + p22u22M21) mod 〈T1, T2〉

Therefore, after taking normal form modulo T1, T2 we get:

T3 = z −
19

36
x
3
y
3 +

169

108
x
2
y
3 − 2y3 + x

3
y
2 −

103

36
x
2
y
2 + 3y2 −

2

3
x
3
y +

16

9
x
2
y +

7

36
x
3 −

13

27
x
2

We can check that the polynomial T3 satisfies expressly T3 ≡ pij mod 〈Mi,Mij〉 for 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.

The following proposition follows from Proposition 3. The notations are the same. For
1 ≤ i ≤ r define Gi ∈ K̄[x, y] such that Gi ≡

∑r2
j=1 Mij mod 〈(x− αi)

e〉 in K̄[x, y].

Proposition 4. By defining F =
∑r1

i=1 Mi, G =
∑r1

i=1 GiuiMi the following hold:

F ∈ K[x], G ∈ K[x, y], F ·G · T3 ≡
∑r1

i=1

(

∑r2

j=1
pijMij

)

Mi mod 〈T1, T2〉.

Proof. The fact that F ∈ K[x] and G ∈ K[x, y] is proved in Lemma 6. From Proposition 3:

T3 ≡
∑r2

j=1
pijuijMij mod 〈(x − αi)

e, T2〉.

The fact that MijMij′ ≡ 0 mod 〈(x− αi)
ℓ, T2〉 if j 6= j′ implies that:

Gi ·
∑r2

j=1
pijuijMij ≡

(

∑r2

j=1
Mij

)(

∑r2

j=1
pijuijMij

)

mod 〈(x − αi)
e, T2〉

≡
∑r2

j=1
pijuijM

2
ij ≡

∑r2

j=1
pijMij

(

1−
∑

t6=j
uitMit

)

mod 〈(x− αi)
e, T2〉

≡
∑r2

j=1
pijMij mod 〈(x − αi)

e, T2〉.

By the Chinese Remaindering Theorem,

∑r1

i=1
uiMi

(

Gi

∑r2

j=1
pijuijMij

)

≡
∑r1

i=1
uiMi

(

∑r2

j=1
pijMij

)

mod 〈T1, T2〉.

Therefore by denoting G =
∑r1

i=1 GiuiMi,

G · T3 ≡
∑r1

i=1
uiMi(

∑r2

j=1
pijMij) mod 〈T1, T2〉

holds. Thanks to Proposition 2 F ·G · T3 ≡
∑r1

i=1 Mi(
∑r2

j=1 pijMij) mod 〈T1, T2〉.

177

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

The following Corollary is proved in a similar way as Corollary 1

Corollary 2. Defining N3 := nf〈T1,T2〉(F ·G · T3), the following equality of ideals is satisfied:

〈T1, T2, T3〉 = 〈T1, T2, N3〉 = 〈T1, N2, N3〉.

Remark 8. 1. The fact that N3 ∈ K[x, y, z] is proved in Lemma 6.

2. From the definition of N3, we see that N3 ≡
∑r1

i=1(
∑r2

j=1 pijMij)Mi mod 〈T1, T2〉. By
comparing with T3 thanks to Proposition 3, the terms uij · ui have been removed.

3.3 Computation of N3

In this paragraph, is explained how to compute efficiently the polynomial G of Proposition 4
under Assumption 3. The notations are the same as in Propositions 3,4.

Lemma 4. In Assumption 4 when ℓ = 1 we have: G ≡ ∂T2

∂y mod 〈T1〉.

Proof. From Remark 6 and the fact that ℓ = 1:

∂T2

∂y
≡

r2
∑

j=1

∏

k 6=j

(y − gik(x)) ≡

r2
∑

j=1

Mij ≡ Gi mod 〈(x − αi)
e〉. (12)

By the Chinese Remaindering theorem, it follows that:

r1
∑

i=1

uiMi(

r2
∑

j=1

∏

k 6=j

(y − gik(x))) ≡

r1
∑

i=1

uiMiGi ≡ G mod 〈T1〉. (13)

Putting these equalities altogether, we obtain the equality stated.

Lemma 4 supplies with a straightforward method to compute G and thus, according to the
definition of N3 in Corollary 2, to compute N3 when ℓ = 1. We focus next on the case ℓ > 1
and the computation of G is addressed in Lemma 7. Recall that from Proposition 4

G =

r1
∑

i=1

uiMiGi ≡

r1
∑

i=1

uiMi(

r2
∑

j=1

∏

k 6=j

(y − gik(x))
ℓ) mod 〈T1〉

Since the term
∑r1

i=1 uiMi has been treated in the section dealing with the case of two variables,
we only need to address the computation of Gi. The Lemma below is “local”, i.e modulo
〈(x−αi)

e〉, and allows to compute Gi. The proof is similar to as the one of Lemma 1. Lemma 7
is a global version to compute G.

Lemma 5. Denote Si =
∏r2

j=1(y − gij(x)), Gi,k =
∑r2

j=1

∏

j′ 6=j(y − gij′ (x))
k. Note that

Gi = Gi,ℓ. Starting from Si, Gi,ℓ can be computed by the following recurrence relation:

Gi,1 =
∂Si

∂y
, Gi,k+1 = Gi,1 ·Gi,k −

Si

k
·
∂Gi,k

∂y
(1 ≤ k ≤ ℓ− 1).

Remark 9. Under Assumption 4, this Lemma is not of practical use, since we only need the
“global” version of it stated in Lemma 7.

Lemma 6. The polynomial N3 defined in Corollary 2 is in K[x, y, z].

178

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

Proof. By Lemma 2 F ∈ K[x] therefore we focus on proving that G ∈ K[x, y]. According
to the definition of N3, this is indeed sufficient to prove that N3 ∈ K[x, y, z]. Proposition 4
gives G =

∑r1
i=1 uiMi(

∑r2
j=1

∏

k 6=j(y − gik)
ℓ) mod 〈T1〉. Consider the following isomorphism of

algebras derived from the Chinese Remaindering Theorem:

ϕ : ⊕r1
i=1(K̄[x]/〈(x − αi)

e〉)[y] → (K̄[x]/〈T1〉)[y]

(a1, a2, · · · , ar1) 7→
∑r1

i=1
uiMiai.

Here Si =
∏r2

j=1(y − gi,j(x)) ∈ K̄[x, y] and T2 ≡ Sℓ
i mod 〈(x − αi)

e〉. Let us define S =
ϕ(S1, S2, · · · , Sr1). We have:

T2 ≡
∑r1

i=1
uiMiS

ℓ
i ≡ ϕ(Sℓ

1, S
ℓ
2, · · · , S

ℓ
r1) mod 〈T1〉

≡ ϕ(S1, S2, · · · , Sr1)
ℓ ≡ Sℓ mod 〈T1〉

By assumption, T2 ∈ K[x, y] hence Sℓ ∈ K[x, y] since that T1 ∈ K[x]. Combined with the fact
that S ∈ K̄[x, y], it follows that S ∈ K[x, y]. Hence ∂S

∂y ∈ K[x, y], and by the next Lemma 7

H1 ∈ K[x, y]. In this way it is proved that G(= Hℓ in the next lemma) ∈ K[x, y].

Lemma 7. For t = 1, . . . , ℓ let Ht := ϕ(G1,t, G2,t, . . . , Gr1,t), so that Hℓ = G. Let S =

T
1/ℓ
2 mod 〈T1〉 be as in the proof of Lemma 6. These polynomials verify the recurrence relation:

H1 =
∂S

∂y
, and Hk+1 = H1Hk −

S

k

∂Hk

∂y
(k ≥ 1)

Proof. Let Gi,j =
∑r2

j=1

∏

k 6=j(y − gik)
j (as defined in Lemma 5). First let us handle H1

H1 =
∑r1

i=1
uiMiGi,1 =

∑r1

i=1
uiMi

∂Si

∂y

Since uiMi ∈ K̄[x], this polynomial does not depend on y:

H1 =
∂

∂y
(
∑r1

i=1
uiMiSi) =

∂ϕ(S1, · · · , Sr1)

∂y
=

∂S

∂y
.

Next let us treat the case k ≥ 1:

Hk+1 =
∑r1

i=1
uiMiGi,k+1 =

∑r1

i=1
uiMi(Gi,1Gi,k −

Si

k

∂Gi,k

∂y
)

= ϕ(G1,1G1,k −
S1

k

∂

∂y
G1,k, · · · , Gr1,1Gr1,k −

Sr1

k

∂Gr1,k

∂y

= ϕ(G1,1, · · · , Gr1,1)ϕ(G1,k, · · · , Gr1,k)−
ϕ(S1, · · · , Sr1)

k

∂

∂y
ϕ(G1,k, · · · , Gr1,k)

This latter equation is equal to H1Hk −
S
k

∂Hk

∂y which is what we wanted to show.

4 Concluding remarks

Summary of contributions We have extended the definitions of polynomials N2, and to
some extent N3 of [4] to non-radical ideals that have a triangular set {T1, T2, T3} ⊂ K[x, y, z]
as lexicographic Gröbner basis. A comparable decrease of the bit-size of coefficient has been

179

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

observed in a Maple implementation. A major difference though lies in the use of squarefree
decomposition, which, despite enjoying of fast algorithms in order to be computed, induces
some complications that prevent to generalize these formulas in full generality to more than
two variables. A detailed complexity analysis of the bit-size as done in [4] is planed in a later
work, the present work focusing more on feasibility in two or three variables.

Implementation in Maple Algorithm 1 to compute the polynomial N2 from T1 and T2

has been implemented in Maple. The squarefree decomposition algorithm is Yun’s one taken
from [6, Algorithm 14.21, p. 385] (see Section 2.4). The code occupies less than 40 lines. The
table below shows benchmarks in the case where T1 = (x− a)e1(x − b)e2 for: (i) some random
values a, b ∈ Z having 15 digits (ii) e1 + e2 = 22, and e1 is ranging from 1 to 11 (iii) moduli of
T2 mod 〈(x − a)e1 〉 and T2 mod 〈(x − b)e2〉 are chosen randomly of degree 15. It is indeed not
necessary to consider more than two factors since this case was already treated in the previous
work [4] which showed the decrease in the bit-size of coefficients. As we can see, the bit-size

e1 1 2 3 4 5 6 7 8 9 10 11

T
2 total 232139 242837 234372 230948 222758 223658 225067 216909 219667 212003 191825

max 575 612 583 550 544 544 543 512 512 494 471

N
2 total 61865 60738 60669 54793 58166 56831 54069 51230 49423 46876 44330

max 328 311 300 260 269 255 239 225 211 197 179

Table 1: Line total displays the sum of the number of digits over all the coefficients in T2 (upper) or N2

(lower). Line max displays the maximal number of digits (≈bit-size) among all the coefficients in T2 or N2.

decrease observed get more important as both degrees e1 and e2 get higher: when e1 = 1 and
e2 = 21, the ratio between the maximal bit-size of the coefficients of N2 and the one of T2 is
328
575 ≈ 0.57 whereas the ratio becomes 179

471 ≈ 0.38 for e1 = e2 = 11. However better ratio than
1/3 where not observed even for higher values of e1 and e2.

Discussion The algorithm to compute N2 treated in Section 2 takes as input the polynomials
T1, T2 and by means of efficient gcd-based subroutines output N2. For N3, Assumptions 5,4 are
added. To be removed the following obstacles must be overcome:

Example 5. Let T1 = x2(x+ 1)2 ∈ Q[x], T2 = (y − x2)(y − x) ∈ Q[x, y].
From T2 ≡ y(y − x) mod 〈x2〉, we see that gcd(x2, 0 − x) = gcd(x2,−x) 6= 1. If we set

A = K[x]/〈x2〉, then:

A[y]/〈y(y − x)〉 6≃ A[y]/〈y〉 ⊕A[y]/〈y − x〉. (14)

On the other hand, since T2 ≡ (y + 2x + 1)(y − x) mod 〈(x + 1)2〉, we have gcd((x +
1)2,−2x− 1− x) = gcd((x + 1)2,−3x− 1) = 1. If we write B = K[x]/〈(x+ 1)2〉, then:

B[y]/〈(y + 2x+ 1)(y − x)〉 ≃ B[y]/〈y + 2x+ 1〉 ⊕B[y]/〈y − x〉. (15)

In this example, Assumption 5 is verified in Equation (15) but not in Equation (14). Actu-
ally, the ring A[y]/〈y(y − x)〉 is primary so we cannot decompose it furthermore. We have no
algorithmic solution for this kind of input.

As for the restriction implied by the “same multiplicity” assumption 4, it can be loosened up
to: denoting T1 =

∏

i S
ei
i the squarefree decomposition of T1, then T2 ≡

∏

j(y − gij(x))
ℓi mod

〈Sei
i 〉, with gij ∈ K̄[x] and verifying Assumption 5. Note that Assumption 4 states that i = 1,

and thus ℓ = ℓ1. Example 5 above does not fulfill this generalized condition on T2.

180

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

References

[1] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J. of Symbolic

Computation, 28(1,2):45–124, 1999.

[2] C. Chen and M. Moreno Maza. Algorithms for computing triangular decompositions of polynomial
systems. In Proceedings of the 36th International Symposium on Symbolic and Algebraic Computa-

tion, ISSAC ’11, pages 83–90, New York, NY, USA, 2011. ACM.

[3] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques for triangular
decompositions. In ISSAC’05, pages 108–115. ACM, 2005.

[4] X. Dahan and É. Schost. Sharp estimates for triangular sets. In ISSAC ’04: Proceedings of the

2004 International Symposium on Symbolic and Algebraic Computation, pages 103–110. ACM Press,
2004.

[5] X. Li, C. Mou, and D. Wang. Decomposing polynomial sets into simple sets over finite fields: The
zero-dimensional case. Computers & Mathematics with Applications, 60(11):2983 – 2997, 2010.

[6] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, New
York, NY, USA, 2003. Second Eddition.

[7] D. Wang. Elimination Methods. Texts & Monographs in Symbolic Computation. Springer Vienna,
2012.

[8] W. T. Wu. On zeros of algebraic equations - an application of Ritt principle. Kexue Tongbao, 5:1–5,
1986.

Appendix

We detail here the complexity estimates written in Algorithm 1. Let us recall some notations;
d1 := deg(T1), d2 = degy(T2), and dSj

= deg(Sj) where T1 =
∏n

j=1 S
j
j is the squarefree

decomposition of T1. In particular, the degree equality d1 =
∑

j jdSj
holds.

Following [6, p. 242], we will use multiplication time function denoted M(d). This is an upper
bound on the maximal number of operations in the base field K to perform the multiplication
of two polynomials of degree at most d. Shönhage Strassen’s version of Fast Fourier Transform
provides the estimate M(d) = O(d log(d) log(log(d))). M(.) is thus super-linear: M(a)+M(b) ≤
M(a+ b). We start by establishing the complexity stated in Remark 4.

Lemma 8. To compute Fe,e from S = sqf(T1) using the recurrence relation of Lemma 1, less
than O(A log(A) log(log(A))) operations over K is required (where A = (e+ 1)(d1 − e)).

Proof. Let δe,ℓ := deg(Fe,ℓ). Starting from δe,1 = deg(Fe,1) = deg(S) = r − 1 (where r = d1/e)
the recurrence relation gives δe,ℓ+1 = deg(Fe,1) + deg(Fe,ℓ − 1) = δe,1 + δe,ℓ = r − 1 + δe,ℓ,
yielding δe,ℓ = (r − 1)ℓ = ℓd1/e− ℓ.

The addition in the recurrence formula has indeed a negligible cost. For each ℓ = 0, . . . , e−
1, we need to perform one differentiation of a polynomial of degree δe,ℓ = ℓd1/e − ℓ; one
multiplication of a polynomial of degree δe,ℓ−1 by one of degree r = d1/e; and one multiplication
by two polynomials of respective degree r−1 = d1/e−1 and δe,ℓ. The differentiation is negligible,
remains to evaluate the cost of the two multiplications: M(δe,ℓ − 1) +M(δe,ℓ) ≤ 2M(δe,ℓ). This

is repeated e times yielding
∑e

ℓ=1 2M(δe,ℓ) ≤ 2M(
∑e

ℓ=1 ℓ(d1/e − 1)) = 2M(e(e+1)
2 (d1

e − 1)) ≤
M((e + 1)(d1 − e)) by super-linearity of M(.). The complexity of the lemma follows.

Theorem 3. (a) Step 1 requires less than O(d1 log(d1)
2 log(log(d1))) operations in K.

(b) The cost of the for loop at Steps 2-4 is less than O((n− 1)d1d2 log(nd1) log(log(nd1))).
(c) Step 6 requires up to M((j + 1)(jdSj

− j)) operations in K.

181

Bit-size reduction of triangular sets in two or three variables Yamashita, Dahan

(d) Step 7 can be performed within d2
[

M(Cj) + 4M(Bj) +M(jdSj
) +O(jdSj

)
]

operations in
K, where Cj = max{dSj

− j, d1 − jdSj
} and Bj = d1 − j(dSj

+ 1).
(e) The cost of the for loop of Steps 5-8 is less than O(nd2d1 log(nd1) log(log(nd1))).
(f) Step 9 requires at most O(nd2d1 log(nd1) log(log(nd1))) operations in K.
(g) the total cost, in term of number operations in K, of Algorithm 1 is roughly upper bounded

by O(nd2d1 log(nd1) log(log(nd1))).

Proof. (a) is explained at the beginning of Section 2.4.
Fast Newton’s iteration based Euclid algorithm [6, Theorem 9.6] allows to perform the

division T1/S
i
i in 4M(deg(T1) − deg(Si

i)) +M(deg(Si
i)) + O(deg(Si

i)). The loop runs over the
number of squarefree factors n of T1, yielding the following estimate using the notations stated
before the theorem, deduced from the super-linearity of M(.),

∑n

i=1
4M(d1 − idSi

) +M(idSi
) +O(idSi

) ≤ 4M((n− 1)d1) +M(d1) +O(d1).

The dominating term of the above function can be bounded byO((n−1)d1 log(nd1) log(log(nd1))).
The second operation performed during the loop of Steps 2-4 is T2 mod Si

i , which amounts to
execute d2 Euclidean divisions, one for each coefficient of T2 ∈ (K[x])[y]. A similar analysis done
for the first operation T1/S

i
i shows that this requires up to O((n−1)d1d2 log(nd1) log(log(nd1)))

operations over K. This shows (b).

The estimate of Step 6 stated in (c) is explained in Lemma 8.

Note that deg(Fj,j) = δj,j = j(dSj
/j − 1) = dSj

− j and that each coefficient in x of
pj ∈ (K[x])[y] has degree at most d1 − jdSj

. The multiplication Fj,jpj thus costs at most
d2M(Cj), Cj := max{dSj

− j, d1− jdSj
}. Since each coefficient in x of Fj,jpj(x, y) is thereby of

degree in x less than Bj := d1− j(dSj
+1) it follows that the reduction modSj

j of each of these

coefficients can be estimated to cost less than d2
[

4M(d1 − j(dSj
+ 1)) +M(jdSj

) +O(jdSj
)
]

.
All in all, we can see that Step 7 can be performed within the number of operations over K
stated in (d).

To estimate the overall cost of the for loop at steps 5-8, it suffices to sum up the complexities
of Steps 6 and 7 above. For Step 6:

∑n
j=1 M((j + 1)(dSj

− j)) ≤ M(
∑n

j=1(j + 1)(dSj
− j)). We

observe that
∑n

j=1(j +1)(dSj
− j) = d1 + (

∑

j dSj
)− (n(n+1)/2), yielding M(d1 + (

∑

j dSj
)−

(n(n+ 1)/2)).
For Step 7: after summing up over j the three termsM(Cj), 4M(Bj) andM(jdSj

) involved in

the estimate of (d), we obtainM((n−1)d1+C̃k), 4M((n−1)d1−(
∑

j dSj
)) andM(d1) respectively

(here C̃k = 0 if Cj = d1 − jdSj
for all j, or C̃k = dSk

− k − (d1 − kdSk
) if for some, necessarily

unique k, Ck = dSk
− k). As one can see, the dominating term is M(n(d1− 1)+ C̃k) ≤ M(nd1).

It is multiplied by d2, largely outclassing the cost of Step 6. Therefore, the overall cost of Step 6
and Step 7 is dominated by a term is d2M(nd1) yielding the upper bound of (e).

Finally Step 9 consists in multiplying the d2 coefficients in x of qk ∈ (K[x])[y] by mk.
The degrees at play are respectively kdSk

and d1 − kdSk
, yielding a d2M(Ck) where Ck =

max{d1 − kdSk
, kdSk

}. Let I := {1 ≤ k ≤ n | kdSk
= maxj{jdSj

}}. If Ck = kdk for some k,
then d1 − kdSk

=
∑

j 6=k jdj ≤ kdk showing that k ∈ I and I = {k}.
It remains to sum over j = 1, . . . , n. As for the multiplication, in the case where Ck =

d1 − kdSk
for all k, we obtain the upper bound d2M((n − 1)d1 + C̃k), where C̃k = 0 if for all

j, Cj = d1 − jdSj
, and C̃k = 2kdSk

− d1 if there is a (unique) k for which Ck = kdk. This is
upper bounded by d2M(nd1) and thus by O(nd2d1 log(nd1) log(log(nd1))) as stated.
We can see that Step 7 or Step 9 in worst case outclasses other steps, yielding the result (g).

182

	Introduction
	Case of two variables
	Review of the radical case
	Preliminary toward a generalization to multiple roots
	Computation of N2 in a special case
	General case: need of squarefree factorization

	Attempt of generalizations: case of three variables
	Review on the case of a radical ideal in three variables
	Toward generalization
	Computation of N3

	Concluding remarks

