
A Possibilistic Fuzzy Approach for Novelty

Detection with Automatically Adjusted Number

of Clusters*

Shakhnaz Akhmedova, Vladimir Stanovov, Eugene Semenkin and Sophia

Vishnevskaya
Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation

shahnaz@inbox.ru, vladimirstanovov@yandex.ru,

eugenesemenkin@yandex.ru, vichnevskaya@mail.sibsau.ru

Abstract

This paper introduces a new modification of the Possibilistic Fuzzy multiclass

Novelty Detector for data streams (PFuzzND). Mentioned modification is based on the

implementation of the automated adjustment of the number of clusters for each class

(determined beforehand or during the novelty detection procedure) to improve

algorithm’s ability to divide objects into small groups. As result, the proposed approach

generates models with flexible class boundaries, which are capable to identify new

classes or extensions of the ones that are already known as well as the outliers.

Proposed possibilistic fuzzy algorithm for novelty detection was used to solve various

benchmark problems with synthetically generated datasets. In order to show the

workability and efficiency of the introduced modification its results were also compared

with the results obtained by the original PFuzzND algorithm. Thus, it was established

that the PFuzzND technique with automatically adjusted number of clusters allows

achieving better results in regards to the accuracy, the Macro F-score metric and the

unknown rate measure. Comparison to the original algorithm showed that the proposed

modification outperforms it but is sensitive to the parameter settings, which can be also

said about the PFuzzND method. Therefore, the MPFuzzND approach can be used

instead of the original PFuzzND algorithm for other classification problems.

1 Introduction

Data stream mining is the process of the knowledge discovery in large amounts of continuously

generated data (Bifet A., 2018). It usually involves appearance of new concepts, their evolution and

* The reported study was funded by RFBR and FWF according to the research project № 21-51-14003\21.

EPiC Series in Computing

Volume 81, 2022, Pages 65–76

Proceedings of 11th International Congress
on Advanced Applied Informatics

T. Matsuo (ed.), IIAI AAI 2021-Winter (EPiC Series in Computing, vol. 81), pp. 65–76

even disappearance, thus, novelty detection (Pimentel, 2014) becomes one of the most important tasks

for data stream learning. Novelty detection is the process of identifying new or unknown situations

not experienced before (or new objects not seen before). Novelty detection tasks can be considered as

classification problems with aim to distinguish new concepts, which can be extensions of already

existing and known classes or something completely new and, therefore, these concepts may form

new groups (classes). Besides, novelty detection also allows determining noise in data streams.

Novelty detection is related to the outlier detection (Chandola, 2009): both mechanisms are

interested in detecting abnormal or unusual observations in data streams also called anomalies.

Outliers (or anomalies) in data are extreme values that deviate from other observations in a given

dataset, they may indicate noise, errors in measurement or a novelty. Thus, novelty detection is a

semi-supervised learning approach used for data streams where these outliers may form new patterns

in data.

There are two possible outcomes of the novelty detection algorithms application: concept

evolution and concept drift. Concept evolution in data streams refers to the appearance of novel

classes while streams evolve (Gama, 2010). Traditional classifiers are unable to detect novel classes,

which leads to misclassifying all instances representing the novel concepts. Novel concepts should be

determined as soon as they appear in data streams so that they could also be assimilated into the

underlying concept for further detection of recurring novel class instances. The term concept drift

refers to changes in the conditional distribution of the output or in other words target variable given

the input features, while the distribution of the input features may stay unchanged (Cejnek, 2018).

Concept drift indicates that there are extensions of the previously established classes that should be

considered for new incoming data instances.

Nowadays, novelty detection problems receive increasing interest from researchers due to their

applicability and significance in real-world practices, thus, more works have been proposed to solve

them in the last years, for example (Ouafae, 2020) or (Silva, 2018). Most of the novelty detection

approaches have two phases, namely offline and online phases (Faria, 2018): that makes it possible to

use already known information about the part of the instances to find new patterns among the new

data. Additionally, in order to generate more flexible and efficient models researches started

frequently implementing fuzzy logic while developing the novelty detection algorithms (Škrjanc,

2019).

In this study, a new modification of the Possibilistic Fuzzy multiclass Novelty Detector for data

streams (PFuzzND) (Silva, 2020) is introduced. The original PFuzzND approach is based on the

MINAS algorithm (de Faria, 2016): it has both offline and online phases and uses the fuzzy set

theory. It is applicable to the multiclass data streams and divides each class into the pre-determined

number of clusters. Thus, in the proposed modification (denoted as MPFuzzND hereinafter) the

number of clusters for all classes is automatically adjusted on each step of the algorithm’s work.

In order to demonstrate the advantages of the proposed MPFuzzND method it was evaluated on a

set of benchmark problems with synthetically generated datasets (Data stream repository). Obtained

results were compared with results of the original PFuzzND algorithm. It should be noted that the

experimental results were evaluated by the accuracy, the Macro F-score metric and the unknown rate

measure (de Faria, 2016). Finally, it was established that the proposed method outperformed its

alternative PFuzzND, thus, its usefulness was proved. However, it is dependable on its parameters

that should be accurately chosen for each problem. Therefore, it is shown that the main advantage of

the MPFuzzND is that it allows finding better description of the data streams in terms of accuracy,

Macro F-score and unknown rate measure thanks to clusters merging procedure.

Therefore, in this paper, firstly, the original possibilistic fuzzy algorithm PFuzzND is described,

and then the description of its modification is presented. In the next section the experimental results,

namely the experimental setup and numerical results obtained by the proposed approach as well as

results obtained by the original PFuzzND algorithm are discussed and demonstrated. Finally, some

conclusions are given in the last section.

A Possibilistic Fuzzy Approach for Novelty Detection with AANC Akhmedova et al.

66

2 Proposed Approach

In this section a brief description of the original possibilistic fuzzy approach PFuzzND, proposed

in (Silva, 2020), is given. It is followed by the description of the developed modification MPFuzzND

based on the automated selection of the number of clusters for each class (known or found during

algorithm’s work). It should be noted that the original PFuzzND algorithm as well as its modification

MPFuzzND are both using the well-known fuzzy clustering method, namely the Possibilistic Fuzzy

C-Means (PFCM) method (Pal, 2005). In its turn, the PFCM method is based on ideas introduced for

the fuzzy clustering method FCM (Bezdek, 1981) and the possibilistic clustering method PCM

(Krishnapuram, 1993) and, therefore, both the membership values and typicalities are used to generate

models, which are more successful during the novelty detection procedure and are less sensitive to

parameter choices.

2.1 Baseline Possibilistic Novelty Detection Approach

As was mentioned above the PFuzzND approach has two phases, offline and online, whereas the

online phase also can be divided into two steps, namely the main step and the novelty detection step.

Let us assume that there are N instances x1, x2, …, xN in a given data stream, and each instance is

presented as a vector in the D-dimensional space.

The offline phase is performed one time at the beginning of the algorithm’s work, at this phase the

timestamp is t = 1. During that phase firstly the portion p_offline of instances from the data stream are

randomly chosen with the only condition, to be more specific, these instances should be already

labelled. Let us say that there are NC known classes during the offline phase. The end-user has to

choose into how many clusters each class will be divided (that number will be denoted as k_class

hereinafter). Then for each class the PFCM method is applied and each known class is described by

two k_class × N matrices by the end of the offline phase

1. the membership matrix U (each column of matrix U consists of a given instance’s

membership values to all k_class clusters);

2. the typicality matrix T (each column of matrix T consists of a given instance’s typicality

values for all k_class clusters).

So the decision model is defined as the set of NC ∙ k_class clusters found for all NC different

known classes at the timestamp t = 1. It should be noted that the PFCM algorithm has its own

parameters, which should be accurately chosen (Pal, 2005).

An empty external set, called short memory, is created before the main step of the online phase

starts. Examples labelled as unknown are stored in short memory for a time-period ts, after that time

limit those instances are removed from the mentioned set. Moreover, there are four additional

parameters:

1. the minimum number of instances (denotes as SM) in the short memory to start the novelty

detection procedure;

2. the initial threshold θinit for classifying and processing instances from the data stream;

3. two adaptation thresholds θclass and θadapt used during the classification step.

Thus, during the online step firstly for each new instance xj from the data stream its membership

values and typicalities related to all existing (known) at moment clusters are calculated. Typicality

values are used to determine whether the instance xj will be labelled by one of the existing classes or

will be marked as unknown. For this purpose the highest typicality value of the j-th instance and the

corresponding existing class Ci (i = 1, …., NC) are determined. Then this value is compared with the

A Possibilistic Fuzzy Approach for Novelty Detection with AANC Akhmedova et al.

67

difference between the mean of maximum typicalities of all instances considered before xj (and

belonging to the class Ci) and the adaptation threshold θadapt. If the highest typicality is greater than

the mentioned difference then the instance xj will be labelled as belonging to the class Ci (Silva,

2020). It should be noted that the highest typicality of the first instance processed after the offline

phase is compared to the initial threshold θinit.

If the instance xj is labelled then the mean of maximum typicalities as well as the clusters of the

class Ci are updated (the latter is done by using the PFCM method). Otherwise, the highest typicality

of that instance is compared to the difference between the mean of maximum typicalities of all

instances considered before xj (and belonging to the class Ci) and the adaptation threshold θclass. If the

highest typicality is greater than the last difference then the instance xj will be labelled as belonging to

the class Ci and new cluster will be created for it with xj as its centroid (Silva, 2020).

If neither of conditions is met then the instance xj will be marked as unknown and stored in the

short memory until the novelty detection step will be executed. The latter happens if the number of

instances marked as unknown reached SM. In this case, firstly, the PFCM approach is applied to all

the instances in the short memory and the pre-determined number k_short of clusters is generated.

After that for each generated cluster its fuzzy silhouette (Campello, 2006) is calculated and if the

obtained value is greater than 0 and the considered cluster is not empty then this cluster is evaluated

as the valid one.

All validated clusters of the short memory represent new patterns. Next step of the novelty

detection procedure consists in calculating how similar these validated clusters are to the ones already

existing in the model, which is done by using the fuzzy clustering similarity metric introduced in

(Xiong, 2004). Finally, if the value of the mentioned metric between one of the known clusters and

the examined valid cluster of short memory is greater than φ (which is another parameter of the

PFuzzND approach) then all instances from the examined cluster are labelled the same way as

instances of the considered known cluster. Consequently, clusters of the corresponding class are

updated by the PFCM algorithm (Silva, 2020). Otherwise new class CNC+1 is created, instances from

the examined cluster are labelled as belonging to the class CNC+1, NC increases by one.

If one of the short memory clusters is not validated then it is discarded and its instances remain in

the short memory until the model executes the novelty detection procedure again or decides to remove

them at all, which can happen if these instances were in the short memory for ts iterations.

2.2 Modified Possibilistic Fuzzy Clustering Method

The modification MPFuzzND of the original approach consists in the automated selection of the

number of clusters for each class known beforehand or determined during the novelty detection

procedure. To be more specific the original PFuzzND algorithm allows increasing the number of

clusters belonging to each class, but not the other way around. Experiments showed that in some cases

the instances belonging to the same class might be divided into the large number of clusters and that

can lead to bad classification results. Thus, in this study it is proposed to merge clusters belonging to

the same class if they are similar to each other, which allows decreasing their number.

The similarity between clusters is defined according to the metric proposed in (Xiong, 2004). It

can be described in the following way: firstly, the dispersions of two considered clusters are

calculated, then the dissimilarity between these clusters is determined and, finally, the sum of

dispersions is divided by the dissimilarity value (Xiong, 2004). Cluster’s dispersion is the weighted

sum of distances between instances belonging to this cluster and its center averaged by the number of

considered instances. It should be noted that the weight coefficients here are the typicality values,

even though in (Xiong, 2004) the membership values were used. The dissimilarity between two

clusters is the Euclidian distance between their centers.

Below the pseudo-code of the proposed modification is demonstrated.

A Possibilistic Fuzzy Approach for Novelty Detection with AANC Akhmedova et al.

68

If CNk > 2

 For i = 1 : CNk

 For j = 1 : CNk

 If i > j

 Calculate the similarity value FSij between the i-th and the

 j-th clusters

 End If

 End For

 End For

 Find the maxFS = max{FSij}, i = 1,…,CNk and j = 1,…,CNk

 Determine centres of the most similar clusters cntr1 and cntr2

 corresponding to the maxFS value

 If maxFS > θmerge

 Create new cluster by merging two the most similar clusters

 Calculate the centre of the new cluster:

 cntr = 0.5 ∙ (cntr1 + cntr2)

 Decrease the number of clusters:

 CNk = CNk – 1

 Execute the PFCM algorithm with new CNk clusters to update them

 End If

End If

In the presented pseudo-code CNk is the number of clusters belonging to the k-th class, θmerge is the

new parameter introduced for this modification, and it is called the merging threshold. For clusters of

the k-th class the symmetric matrix FS of similarity values is calculated and two the most similar

clusters are determined, their similarity value is denoted as maxFS here. If the maxFS value is greater

than the mentioned threshold θmerge then these two clusters should be merged and new cluster should

be created instead of them with center calculated as it is shown in the pseudo-code. After the PFCM

algorithm is used to update the clusters of the considered class (centers of existing clusters are taken

as the initial points for them).

It should be noted that the proposed merging operator is applied on each iteration of the online

phase before the novelty detection procedure is executed. To be more specific, it is applied each time

when one of two conditions, described in the previous subsection, is met, i.e. the new considered

instance is labelled as belonging to the already existing class (it could have been known on the offline

phase or found on previous iterations of the online phase). Additionally, there is no need to merge

clusters if their number is less than three, thus, it is used only if CNk > 2.

3 Experimental Results

In order to verify the advantages of the proposed modification of the PFuzzND approach, its

results were compared against the results obtained by the original PFuzzND algorithm. This

comparison was not done against the well-known MINAS algorithm due to the fact that it was

outperformed by the PFuzzND approach according to (Silva, 2020). To conduct the experiments 10

synthetic datasets from (Data stream repository) were used. Each experiment was executed 10 times

due to the randomness of the clustering algorithm used as during offline so during the online steps.

Next, the datasets and the evaluation metrics used in the experiments as well as obtained results

will be explained.

A Possibilistic Fuzzy Approach for Novelty Detection with AANC Akhmedova et al.

69

3.1 Experimental Setup and Benchmark Problems

The execution of the methods was done by using 10 synthetic datasets named as DS1, …, DS10

(Data stream repository). Table 1 presents the details of each dataset:

1. column Instances indicates the total number of examples for each dataset respectively;

2. column Attributes indicates the number of features for each dataset respectively;

3. column Classes (Offline) indicates the number of known at the offline step classes;

4. column Classes indicates the minimum total number of classes for each dataset (the

difference between this number and the corresponding value from the column Classes

(Offline) is the minimum number of novel classes that the algorithms are expected to detect).

Dataset Instances Attributes Classes (Offline) Classes

DS1 1000 2 3 4

DS2 5500 2 2 3

DS3 10000 2 3 3

DS4 11000 2 2 3

DS5 20000 2 3 3

DS6 10000 2 4 4

DS7 10000 2 3 3

DS8 10000 3 3 3

DS9 10000 2 4 4

DS10 40000 3 3 4
Table 1: Datasets used in experiments

Both the original PFuzzND approach and its modification MPFuzzND use possibilistic fuzzy

clustering algorithm PFCM during offline and online phases. Parameters of the PFCM algorithm were

the same for all conducted experiments, and they are listed in Table 2. The following notations are

used in this table: expo and nc are constants responsible for the membership and the typicality values,

a and b are constants that show the influence of the membership and the typicality values during the

decision making step, MaxIter is the maximum number of iterations for PFCM to generate a given

number of clusters, and MinImp is the minimum difference between the objective function values

calculated on two consequential iterations of the PFCM algorithm (if this difference was less than

MinImp then calculations stopped).

Parameter Value

Expo 2

MaxIter 1000

MinImp 0.0005

a 1

b 4

nc 3

Table 2: Parameters of the PFCM algorithm

It should be noted that the PFCM clustering method uses a specific parameters γi for each i-th

cluster. These parameters influence the typicality values, which in their turn are necessary to

determine clusters’ centers. The γi parameters were introduced for the possibilistic clustering method

PCM (Krishnapuram, 1993), in that work they were user-defined constants, while in (Krishnapuram,

A Possibilistic Fuzzy Approach for Novelty Detection with AANC Akhmedova et al.

70

1996) authors proposed to calculate these values on each iteration of the clustering algorithm. Thus, in

this study experiments were conducted as for γi = 1 for all clusters so for the iteratively calculated γi.

Conducted experiments were related to the comparison between the original PFuzzND approach

and its modification MPFuzzND. Thus, to make it fair the same basic parameters were used during

the offline and the online phases (including the novelty detection procedure) of both algorithms.

These parameters are listed in Table 3 and the following additional notations are used:

1. offline phase – moff is the fuzzification parameter during the offline phase, k_class is the

maximum possible number of clusters generated for each known class at that phase, p_offline

is the portion of data instances used during the offline step (for these instances class labels

are already known) to generate the first model;

2. novelty detection procedure – SM is the minimum amount of unknown examples in the short

memory required for the novelty detection procedure to be executed, ts is a time limit

corresponding to the removal of older unknown examples in short memory, mnd is the

fuzzification parameter for the novelty detection procedure, k_short is the maximum possible

number of clusters generated for instances stored in the short memory, and φ is the parameter

corresponding for the decision if the considered cluster is responsible for the concept drift or

for the concept novelty.

Offline phase Online phase Novelty detection

Parameter Value Parameter Value Parameter Value

moff 2 θinit 0.3 SM 40

k_class 3 θclass 0.2 ts 200

p_offline 0.1 θadapt 0.15 mnd 2

 θmerge * k_short 4

 φ 1

Table 3: Basic parameters of the PFuzzND algorithm and its modification MPFuzzND

It should be noted that for the original PFuzzND algorithm parameters k_class and k_short are

fixed during the offline phase and the novelty detection procedure, namely exactly these numbers of

clusters are generated for each known class and short memory respectively. Thus, initially the number

of clusters is the same for all known classes but later it can be different for classes due to the

procedures executed during the online phase. Additionally, in this study the maximum number of

clusters created for one class is limited, namely this number cannot be greater than 8 or less than 2.

As for the modification MPFuzzND, the main problem was to determine which value to use for

the θmerge threshold. This value varied from 0.1 to 1.4 in conducted experiments. This range was

chosen due to the fact that the merging idea is based on the study presented in (Xiong, 2004) and,

thus, the similar values were used there.

Experiments were evaluated using the incremental confusion-matrix, which evolves as soon as a

new data point is classified (de Faria, 2015). This matrix is composed by rows and columns that

represent known classes, concept drift of known classes and new classes (concept evolution), and

finally unlabelled data instances (the ones removed from the short memory). So, for each dataset three

values were calculated over 10 program runs: the accuracy, the Macro F-score metric and the

unknown rate measure UnkR (de Faria, 2016). The accuracy was calculated only for the labelled data

instances (new classes weren’t considered), while the Macro F-score values were calculated

considering not only the examples classified with already existing class labels but also with new class

labels, determined by algorithm during the novelty detection process.

A Possibilistic Fuzzy Approach for Novelty Detection with AANC Akhmedova et al.

71

3.2 Numerical Results

The aim of the conducted experiments was to compare the MPFuzzND modification with the

original PFuzzND algorithm. Thus, two configurations of both algorithms were executed on all 10

datasets 10 times: with γi set to 1 for each i-th cluster and with iteratively calculated γi for each i-th

cluster.

Dataset Acc MF UnkR Dataset Acc MF UnkR

DS1

MPFuzzND

θmerge = 0.2
99.89 100 4.50

DS6

MPFuzzND

θmerge = 0.2
96.90 96.40 15.69

MPFuzzND

θmerge = 0.6
99.87 100 3.00

MPFuzzND

θmerge = 0.6
98.51 98.01 50.42

MPFuzzND

θmerge = 0.8
99.89 100 3.00

MPFuzzND

θmerge = 0.8
97.74 97.09 48.14

MPFuzzND

θmerge = 1.10
99.89 100 2.58

MPFuzzND

θmerge = 1.10
98.89 98.51 48.30

PFuzzND 99.89 100 1.58 PFuzzND 98.81 98.39 49.76

DS2

MPFuzzND

θmerge = 0.2

MPFuzzND

θmerge = 0.6

MPFuzzND

θmerge = 0.8

MPFuzzND

θmerge = 1.10

86.19 94.34 0.52

DS7

MPFuzzND

θmerge = 0.2
97.54 97.52 1.37

85.14 93.06 0.00
MPFuzzND

θmerge = 0.6
97.28 98.26 0.31

85.86 93.91 0.00
MPFuzzND

θmerge = 0.8
97.57 97.55 0.20

81.43 88.19 0.00
MPFuzzND

θmerge = 1.10
97.56 97.55 0.28

PFuzzND 84.11 91.89 0.00 PFuzzND 97.54 97.52 0.27

DS3

MPFuzzND

θmerge = 0.2
88.80 88.20 3.10

DS8

MPFuzzND

θmerge = 0.2
98.41 98.40 1.69

MPFuzzND

θmerge = 0.6
88.87 88.48 1.73

MPFuzzND

θmerge = 0.6
98.44 98.42 1.62

MPFuzzND

θmerge = 0.8
88.52 88.22 1.63

MPFuzzND

θmerge = 0.8
90.73 90.54 0.51

MPFuzzND

θmerge = 1.10
88.54 88.26 1.67

MPFuzzND

θmerge = 1.10
92.52 92.41 0.51

PFuzzND 88.52 88.25 1.62 PFuzzND 90.51 90.09 0.60

DS4

MPFuzzND

θmerge = 0.2
87.24 95.89 0.00

DS9

MPFuzzND

θmerge = 0.2
95.07 95.05 0.43

MPFuzzND

θmerge = 0.6
82.16 89.16 0.00

MPFuzzND

θmerge = 0.6
91.98 91.91 0.36

MPFuzzND

θmerge = 0.8
75.29 79.39 0.00

MPFuzzND

θmerge = 0.8
93.50 93.41 0.16

MPFuzzND

θmerge = 1.10
78.57 84.11 0.00

MPFuzzND

θmerge = 1.10
94.19 94.16 0.11

PFuzzND 67.85 69.19 0.00 PFuzzND 93.60 93.60 0.09

DS5

MPFuzzND

θmerge = 0.2
88.55 87.94 2.98

DS10

MPFuzzND

θmerge = 0.2
58.65 64.62 0.03

MPFuzzND

θmerge = 0.6
86.45 86.23 1.90

MPFuzzND

θmerge = 0.6
65.58 72.00 0.01

MPFuzzND

θmerge = 0.8
86.18 85.96 2.00

MPFuzzND

θmerge = 0.8
62.59 68.14 0.03

MPFuzzND

θmerge = 1.10
86.35 86.13 2.08

MPFuzzND

θmerge = 1.10
65.87 72.51 0.01

PFuzzND 86.50 86.30 2.06 PFuzzND 65.43 71.93 0.02

Table 4: Results obtained by the PFuzzND algorithm and proposed modification MPFuzzND, γi = 1

A Possibilistic Fuzzy Approach for Novelty Detection with AANC Akhmedova et al.

72

Results obtained for both configurations of compared algorithms on all datasets are presented in

Table 4 and Table 5. In these tables results averaged by the number of program runs are shown, and

Acc means accuracy in % while MF denotes the Macro F-score metric values also given in %.

Additionally, the UnkR values here should be multiplied by 10
–3

.

Dataset Acc MF UnkR Dataset Acc MF UnkR

DS1

MPFuzzND

θmerge = 0.3
88.50 94.62 109.75

DS6

MPFuzzND

θmerge = 0.3
98.84 98.45 51.68

MPFuzzND

θmerge = 0.7
93.36 97.65 114.17

MPFuzzND

θmerge = 0.7
93.34 91.40 46.58

MPFuzzND

θmerge = 0.8
85.23 89.66 103.33

MPFuzzND

θmerge = 0.8
98.55 98.08 48.87

MPFuzzND

θmerge = 1.10
93.15 96.70 129.67

MPFuzzND

θmerge = 1.10
98.81 98.39 53.34

PFuzzND 81.54 84.16 85.17 PFuzzND 98.80 98.37 52.36

DS2

MPFuzzND

θmerge = 0.3

MPFuzzND

θmerge = 0.7

MPFuzzND

θmerge = 0.8

MPFuzzND

θmerge = 1.10

86.88 92.91 61.28

DS7

MPFuzzND

θmerge = 0.3
97.95 97.94 70.16

86.78 92.66 59.59
MPFuzzND

θmerge = 0.7
98.10 98.09 71.02

86.30 92.76 64.91
MPFuzzND

θmerge = 0.8
98.09 98.08 69.14

87.54 93.31 64.45
MPFuzzND

θmerge = 1.10
98.16 98.16 71.20

PFuzzND 82.72 90.48 55.56 PFuzzND 98.11 98.10 72.88

DS3

MPFuzzND

θmerge = 0.3
67.54 67.38 57.51

DS8

MPFuzzND

θmerge = 0.3
99.86 99.87 42.72

MPFuzzND

θmerge = 0.7
69.72 70.07 56.14

MPFuzzND

θmerge = 0.7
99.87 99.87 46.36

MPFuzzND

θmerge = 0.8
70.32 70.68 57.96

MPFuzzND

θmerge = 0.8
99.87 99.88 47.83

MPFuzzND

θmerge = 1.10
72.32 72.94 59.90

MPFuzzND

θmerge = 1.10
99.88 99.88 47.44

PFuzzND 69.04 69.30 57.02 PFuzzND 99.89 99.89 47.61

DS4

MPFuzzND

θmerge = 0.3
78.91 86.27 46.22

DS9

MPFuzzND

θmerge = 0.3
94.83 94.83 83.79

MPFuzzND

θmerge = 0.7
89.19 94.10 54.00

MPFuzzND

θmerge = 0.7
95.03 95.03 82.21

MPFuzzND

θmerge = 0.8
74.74 84.10 43.37

MPFuzzND

θmerge = 0.8
95.03 95.03 83.08

MPFuzzND

θmerge = 1.10
85.86 92.24 47.13

MPFuzzND

θmerge = 1.10
95.03 95.09 84.08

PFuzzND 87.65 93.08 49.05 PFuzzND 94.92 94.90 83.22

DS5

MPFuzzND

θmerge = 0.3
71.90 72.48 58.72

DS10

MPFuzzND

θmerge = 0.3
66.97 72.76 8.84

MPFuzzND

θmerge = 0.7
70.15 70.47 57.82

MPFuzzND

θmerge = 0.7
67.08 72.71 8.83

MPFuzzND

θmerge = 0.8
72.03 72.68 61.72

MPFuzzND

θmerge = 0.8
62.20 68.19 9.75

MPFuzzND

θmerge = 1.10
69.72 70.08 56.90

MPFuzzND

θmerge = 1.10
57.19 64.52 8.41

PFuzzND 70.00 70.46 59.10 PFuzzND 61.11 67.42 7.83

Table 5: Results obtained by the PFuzzND algorithm and proposed modification MPFuzzND with iteratively

calculated γi

A Possibilistic Fuzzy Approach for Novelty Detection with AANC Akhmedova et al.

73

In these tables results, given in bold, are the ones, which were obtained by a given configuration

of the proposed modification and were better compared to the results achieved by the original

algorithm.

As was mentioned before, the PFuzzND algorithm and as result its modification MPFuzzND are

sensitive to their parameters, which now include also the merging threshold θmerge. This threshold was

varied in range from 0.1 to 1.4 and only results for 4 different variants of θmerge are presented in both

tables, namely:

1. θmerge = 0.2, θmerge = 0.6, θmerge = 0.8, θmerge = 1.1 when γi are set to 1;

2. θmerge = 0.3, θmerge = 0.7, θmerge = 0.8, θmerge = 1.1 when γi is iteratively calculated.

Lesser values of the θmerge threshold lead to situations when the merging operator is used more

frequently, while larger values of θmerge cause it to occur not as often. According to the obtained

results, proposed modification MPFuzzND outperforms the original algorithm on 7 datasets out of 10

when θmerge = 1.1 in case if γi are set to 1 for all clusters and similarly when θmerge = 0.7 in case if γi are

iteratively calculated. Moreover, for some problems configurations of the MPFuzzND approach with

low values of θmerge outperform the ones with the greater θmerge. Thus, conducted experiments showed

that there is a need to adjust the merging threshold automatically.

Figure 1 shows the comparison of PFuzzND and MPFuzzND with γi = 1 and θmerge = 0.3 on DS3.

As it can be seen from the figure the original algorithm PFuzzND divided the biggest class into seven

clusters, while the proposed modification MPFuzzND merged them all into one cluster, and in the end

model generated by the modification was able to outperform the one generated by the original

approach in terms of all metrics, used in this study. Thus, from Figure 1 it can be clearly seen that

MPFuzzND is merging the clusters within one class, so that the data is described better: in the left

part of the figure the PFuzzND generated too many clusters for the central part, which led to incorrect

classification in the overlapping areas.

Overall, the proposed method was able to detect class extensions in the classification step and

adapt the model during the online phase. Moreover, the MPFuzzND algorithm also could detect the

new classes, which emerged along the online phase for datasets, which had unlabelled instances (the

latter is shown in the column with the unknown measure rate values).

It should be noted that generally both the original PFuzzND algorithm and introduced in this study

MPFuzzND modification show better results in term of the unknown rate measure (closer to zero) and

Figure 1: Comparison of PFuzzND and MPFuzzND, DS3

A Possibilistic Fuzzy Approach for Novelty Detection with AANC Akhmedova et al.

74

the Macro F-score metric when γi are set to 1. Additionally, in general the new MPFuzzND algorithm

classified correctly instances not labelled as unknown more often compared to the PFuzzND

approach. Thus, the MPFuzzND algorithm was able to better represent the distribution of the given

data.

4 Conclusions

In this study a new modification MPFuzzND of the Possibilistic Fuzzy multiclass Novelty

Detector for data streams is introduced. The main idea was to merge clusters belonging to one class so

that the number of its clusters would not be too large because the latter can cause bad classification

results. The merging procedure was inspired by the approach introduced in (Xiong, 2004) but was

changed according to the characteristics of the original PFuzzND algorithm. It is applied on each

iteration of the online phase for each considered class.

Proposed modification was tested on 10 synthetic datasets and its results were compared with

results obtained by the PFuzzND approach. To do that three different metrics were used: the accuracy,

the Macro F-score metric and the unknown rate measure. It was established that generally the

MPFuzzND algorithm outperforms the original PFuzzND regardless of the chosen configuration.

However, proposed merging technique has new parameter, which should be accurately chosen for

each problem, as it is significant in terms of the classification results.

Therefore, in future research an approach for automated adjustment of the proposed modification’s

parameters, including the new one introduced in this study, should be developed. Additionally, in

future more complex datasets can be used to determine whether the proposal provides good results in

these cases, with the parameters obtained automatically.

References

Bezdek J.C. (1981). Pattern recognition with fuzzy objective function algorithms. New York: Plenum.

Bifet A., Gavaldà R., Holmes G., Pfahringer B. (2018). Machine Learning for Data Streams: with

Practical Examples in MOA. The MIT Press.

Campello R.J., Hruschka E.R. (2006). A fuzzy extension of the silhouette width criterion for cluster

analysis. Fuzzy Sets and Systems, 157(21), 2858-2875.

Cejnek M., Bukovsky I. (2018). Concept drift robust adaptive novelty detection for data streams.

Neurocomputing, 309, 46-53.

Chandola V., Banerjee A., Kumar V. (2009). Anomaly detection: a survey. ACM Computing Surveys,

41(3), 1-58.

Data stream repository. (n.d.). Computational Intelligence Group. Department of computingFederal

University of Sao Carlos. Sao Carlos, Brazil. Retrieved from GitHub:

https://github.com/CIG-UFSCar/DS_Datasets

de Faria E.R., Gonçalves I.R., Gama J., de Carvalho A.C.P.L.F. (2015). Evaluation of multiclass

novelty detection algorithms for data streams. IEEE Transactions on Knowledge and Data

Engineering, 27(11), 2961-2973.

de Faria E.R., de Leon Ferreira A.C.P., Gama J. (2016). MINAS: multiclass learning algorithm for

novelty detection in data streams. Data Mining and Knowledge Discovery, 30, 640-680.

Faria E.R., Gonçalves I.J.C.R., de Carvalho A.C.P.L.F., Gama J. (2016). Novelty detection in data

streams. Artificial Intelligence Review, 45, 235-269.

Gama J. (2010). Knowledge Discovery from Data Streams. Chapman & Hall/CRC.

A Possibilistic Fuzzy Approach for Novelty Detection with AANC Akhmedova et al.

75

Krishnapuram R., Keller J. (1993). A possibilistic approach to clustering. IEEE Transactions on

Fuzzy Systems, 1(2), 98-110.

Krishnapuram R., Keller J. (1996). The possibilistic c-means algorithm: insights and

recommendations. IEEE Transactions on Fuzzy Systems, 4(3), 385-393.

Ouafae B., Oumaima L., Mariam R., Abdelouahid L. (2020). Novelty detection review state of art and

discussion of new innovations in the main application domains. In Proceedings of the 1st

International Conference on Innovative Research in Applied Science, Engineering and

Technology (pp. 1-7).

Pal N.R., Pal K., Keller J.M., Bezdek J.C. (2005). A possibilistic fuzzy c-means clustering algorithm.

IEEE Transactions on Fuzzy Systems, 13(4), 517-530.

Pimentel M.A.F., Clifton D.A., Clifton L., Tarassenko L. (2014). A review of novelty detection.

Signal Processing, 99, 215-249.

Silva T.P., Schick L., Lopes P.A., Camargo H.A. (2018). A fuzzy multiclass novelty detector for data

streams. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems (pp. 1-

8). IEEE.

Silva T.P., Camargo H.A. (2020) Possibilistic approach for novelty detection in data streams. In

Proceedings of the 2020 IEEE International Conference on Fuzzy Systems (pp. 1-8). IEEE.

Škrjanc I., Iglesias J.A., Sanchis A., Leite D., Lughofer E., Gomide F. (2019). Evolving fuzzy and

neuro-fuzzy approaches in clustering, regression, identification, and classification: a survey.

Information Sciences, 490, 344-368.

Xiong X., Chan K.L., Tan K.L. (2004). Similarity-driven cluster merging method for unsupervised

fuzzy clustering. In Proceedings of the 20th Conference on Uncertainty in Artificial

Intelligence (pp. 611-618).

A Possibilistic Fuzzy Approach for Novelty Detection with AANC Akhmedova et al.

76

