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Abstract

The Sumo INference Engine (SInE) is a well-established premise selection algorithm
for first-order theorem provers, routinely used, especially on large theory problems. The
main idea of SInE is to start from the goal formula and to iteratively add other formulas to
those already added that are related by sharing signature symbols. This implicitly defines
a certain heuristical distance of the individual formulas and symbols from the goal.

In this paper, we show how this distance can be successfully used for other purposes
than just premise selection. In particular, biasing clause selection to postpone introduction
of input clauses further from the goal helps to solve more problems. Moreover, a precedence
which respects such goal distance of symbols gives rise to a goal sensitive simplification
ordering. We implemented both ideas in the automatic theorem prover Vampire and
present their experimental evaluation on the TPTP benchmark.

1 Introduction

A typical task in saturation-based theorem proving is to show that a certain conjecture formula
C logically follows from axioms A1, . . . , An. In other words, the task is to establish validity of the
implication A1∧. . .∧An → C. As a first step in the most commonly used refutational approach,
the implication is negated, by which the task is transformed into finding an inconsistency
among the set {A1, . . . , An,¬C}. While the subsequent theorem proving technology does not,
in principle, need to keep track of the “distinction in origin” between the axioms Ai and
the negated conjecture ¬C, doing the opposite and treating the descendants of ¬C—typically
referred to as the goal here—in a special way has been the core idea behind several successful
proving heuristics, most notably the set of support strategy [19, 8], applied in various contexts
[11, 1], and others [15, 14, 10, 12]. The main reason why such goal-directed search often
succeeds is that since the axioms A1, . . . , An are on their own typically satisfiable it must be
only in combination with ¬C that an inconsistency can arise.

One of the aspects of theorem proving for which the information about the goal is of central
importance is premise selection, which deals with the task of selecting only a subset of the
input formulas {A1, . . . , An,¬C}, mostly in cases where the whole set would be too large for
efficient processing. A well-known premise selection algorithm called SInE [4], produces a
reasonably small subset of a large input by starting from the goal ¬C and iteratively adding
formulas related to the goal by sharing signature symbols. SInE is especially successful with
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extensive axiomatisations such as ontologies, whose axioms may be describing many aspects of
the formalised world while only a small subset is relevant for proving the given conjecture.

In this paper we show how the computation of SInE implicitly defines a certain heuristical
distance of the individual formulas and their symbols from the goal (Section 2), which can
be used as an essential ingredient of new goal-directed heuristics (Section 3). We define two
such heuristics: The first modifies clause selection to postpone introduction of input clauses
according to their distance from the goal. The second uses the distance of symbols from the
goal to describe a new goal-sensitive simplification ordering. We implemented the new ideas in
the automatic theorem prover Vampire [7] and present an experimental evaluation (Section 5)
on the TPTP benchmark [17]. To put the new results into perspective, we also evaluated two
techniques which were already implemented in Vampire and are recalled in the Section 4.

2 The SInE Algorithm and the Distance from the Goal

In this section we recall the workings of the SInE algorithm as described by Hoder and Voronkov
[4] and show how a run of the algorithm naturally defines a heuristical distance from the goal
of 1) input formulas, and 2) signature symbols.

Let us fix an input problem P over a symbol signature S. P is modelled as a set of formulas
{A1, . . . , An} some of which are marked as goal.1 The signature S consists of both function and
predicate symbols. The equality symbol ≈ is not considered a signature symbol. We denote by
Σ(A) the set of signature symbols occurring in formula A. This notation extends naturally to
sets of formulas: Σ(A) =

⋃
A∈A Σ(A). Moreover, for every symbol s ∈ S we define occ(s) as

the number of occurrences of s in problem P .
As a premise selection algorithm, SInE starts with the goal formulas of P and iteratively

adds those remaining formulas that are triggered by the symbols of formulas already added.
The trigger relation, which we define next, is parametrized by two numbers to be supplied by
the user: 1) a generality threshold g ∈ N, g ≥ 0, and 2) a tolerance t ∈ R, t ≥ 1.0. Now, for a
symbol s and a formula A the relation trigger(s,A) holds whenever s ∈ Σ(A) and

• either occ(s) ≤ g,

• or for every s′ ∈ Σ(A) we have occ(s) ≤ t · occ(s′).

SInE uses the number of occurrences of a symbol occ(s) as a proxy for the intuitive notion of
symbol generality with the understanding that rarely occurring symbols are specific while those
occurring often are general. We do not want general symbols to trigger formulas too often,
because then most formulas would get triggered almost immediately. Thus, the default value
for generality threshold is g = 0 (the first condition never applies) and the default tolerance is
t = 1.0 (only the most specific symbols in a formula trigger it).

Mathematically, we can model the iterative computation of SInE by defining a sequence of
formulas; more specifically, of subsets of P . We start with

A0 = {A ∈ P |A is marked as goal},

and for every i > 0 set

Ai = {A ∈ P | trigger(s,A) for some s ∈ Σ(Ai−1)}.
1A common scenario is to check whether a conjecture C follows from a set of axioms Ai, i.e. whether the

formula A1 ∧ . . . ∧ An → C is logically valid. Here we assume such formula has already been negated for
refutational theorem proving and model problem P as the set {A1, . . . , An,¬C} with ¬C marked as the goal.

39



Aiming for the Goal with SInE Martin Suda

SInE can be run only for a given number of iterations k (where k would be another parameter),
yielding the set

⋃
i≤kAi as the final result. An alternative that we use here for the purpose of

defining our distance from the goal, is to keep running while new formulas are being triggered.
Formally, let l be the smallest index such that

⋃
i≤lAi =

⋃
i≤l+1Ai. It is clear that the

computation can be stopped at the index l, since no new formulas would be added later.
Finally, we can define our distance from the goal. For every A ∈ P we set

d(A) =

{
the smallest i such that A ∈ Ai, if A ∈

⋃
i≤lAi,

l + 1, otherwise.

In particular, d(A) = 0 exactly for those formulas A ∈ P marked as goal. Analogously, for
every s ∈ S we set

d(s) =

{
the smallest i such that s ∈ Σ(Ai), if s ∈ Σ(

⋃
i≤lAi),

l + 1, otherwise.

The choice of value l + 1 as the distance assigned to a formula/symbol that does not oc-
cur in the computed fixpoint

⋃
i≤lAi is purely pragmatic and other (larger) values could be

experimented with in specific contexts of applying the heuristic.
We also note that (non-goal) formulas that do not contain any symbols (and thus can never

be triggered in principle) can be treated specially and assigned distance d(A) = 0. This can be
achieved by simply changing the definition of A0 to

A0 = {A ∈ P |A is marked as goal or Σ(A) = ∅}. (1)

Formulas without symbols, such as ∀XY (X = Y ), are quite rare, but often represent constraints
that should not be ignored. We therefore define A0 according to (1) in our implementation.

3 Making Use of the Distance

In this section, we describe the two new theorem proving techniques that make use of the
SInE-derived distance from the goal.

SInE to Age The first use of our heuristic distance is for clause selection. By default,
Vampire selects clauses for activation by alternating between picking the current oldest clause
(using a queue sorted by the age criterion) and the current lightest clause (using a queue sorted
by the weight criterion). This alternation happens in a certain fixed age-weigth ratio.2

While the weight of a clause simply corresponds to the number of its symbols (although
see below for a possible variation), the age of a clause is established as follows: Input clauses
are assigned age 0 and each clause C derived by a generating inference, such as resolution or
superposition, receives age amax + 1, where amax is the maximum age among C’s parents. A
clause derived by a reduction, such as demodulation or subsumption resolution, receives the
same age as its main parent, i.e. the reduced clause (as opposed to the reducing one).

The idea of the “sine to age” heuristic is to change the age of input clauses (from the default
0) to their established distance from the goal. Thus only the goal clauses will have age 0, while
clauses further from the goal will receive higher age. This will postpone their introduction to
the search (unless they are light and will get selected because of that via the weight criterion).

2Please consult the recent work by Rawson and Reger [9] for more details and an interesting extension.
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SInE to Predicate Levels This second technique modifies the way Vampire constructs its
simplification ordering used for constraining inferences and has been suggested by Kovács et
al. [6]. Predicate levels are a cheap way of simulating transfinite Knuth-Bendix orders (KBO)
for the special case of “top-level” comparison of predicate symbols in atoms. As explained in
[6], when comparing two atoms p(s1, . . . , sm) and q(t1, . . . , tn) one first compares the levels of
p and q. If the level of p is greater, it is decided that p(s1, . . . , sm) � q(t1, . . . , tn). Ordinary
KBO is only used for comparing two atoms having predicates of the same level.

Now the idea from [6] is to assign predicate levels to symbols based on how “close” they
are to the goal. The intuition should be that symbols closer to the goal should receive higher
levels. We implemented this idea using the SInE-derived distance and both with the suggested
and the opposite “polarity” in order to verify the intuition.

4 Other Goal-directed Heuristics

To put the new techniques into perspective in our experiments, we also compare them to
two other goal-directed heuristics that were already implemented in Vampire. Here we briefly
describe the ideas behind each.

Non-goal Weight Coefficient As mentioned above, one of the two criteria for clause selec-
tion in Vampire is clause weight, which is normally computed as the number of symbols in the
clause. Optionally, for every clause which has not been derived from a goal clause, this value is
multiplied by a non-goal weight coefficient, a floating point parameter greater or equal to 1.0.
Thus the input goal clauses and all the clauses directly or indirectly derived from them retain
the actual symbol count as weight, while all other clauses are made artificially heavier and thus
their selection tends to be postponed.

Set of Support While the original idea behind the well-known set of support strategy [19, 8]
is slightly more general than what we describe here, the way it is realised in Vampire makes it
another example of a goal-directed search technique. Set of support modifies the way in which
we initialise the saturation algorithm (see e.g. [7] for a recap of the terminology). Instead of
putting all the input clauses into the Passive set and initialising the Active set as empty, as
usually done, the set of support strategy puts all the non-goal input clauses immediately into
Active and only the goal input clauses in to Passive set. The immediate consequence is that
only clauses that have at least one goal clause as an ancestor in their derivation tree are ever
derived. Unlike the previously described techniques, the set of support strategy is in general
incomplete but nevertheless very useful for solving hard problems.

5 Experiment

We implemented the described ideas in automatic theorem prover Vampire [7] version 4.4. We
evaluated their impact on prover’s performance on the problems from the TPTP library [17]
version 7.2.0. The experiments were run on the StarExec cluster [16], whose nodes are equipped
with Intel Xeon 2.4GHz processors.
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A Base Strategy As a baseline, we chose a strategy using the discount saturation loop (for
stability of results3) with age-weight ratio 10 (which works well with discount), turning off
the AVATAR architecture [18] (to stay as close as possible to the standard saturation-based
paradigm), and setting symbol precedence to frequency (which tends to perform better than
the default).4

We set the time limit to 60 s and disabled the default memory limit.

Other strategies All the remaining evaluated strategies were derived from the base one by
always changing a single option as follows:

• nwc-2.0, nwc-5.0, nwc-10.0 set the non-goal weight coefficient to the respective values
2.0, 5.0, and 10.0.

• s2a enables the “sine to age” option.

Only the goal input clauses are assigned the default age 0, while the remaining ones get
artificially higher age values according to their distances from the goal.

• s2pl-on and s2pl-no deal with the option “sine to predicate levels”.

Turning the option on makes predicate symbols closer to the goal have high precedence
in the ordering (conjecture predicates will tend to occur in maximal literals), while the
value no does the opposite (predicates furthest from the goal will tend to be maximal).

• sos-on, sos-all enable the set of support processing of the input clauses, i.e. all the input
clauses except those derived from the goal are immediately put into the Active container.
sos-all additionally makes all the literals of those input clauses selected (to enable more
interaction during the follow-up inferences).

For the s2a and s2pl options derived from SInE, the generality threshold and tolerance param-
eters were set to their default values, i.e. to 0 and 1.0, respectively.

Results In the used versions of the TPTP library, there are 17 571 problems in a format
accessible to Vampire (either CNF, FOF, or TF0). Out of these, 16 754 problems contain at
least one goal formula and can thus in principle trigger different behaviour of our strategies.

Table 1 shows the number of problems solved by each strategy.5 The ∆base column shows
the difference to the base strategy. We can see that while the nwc strategies and s2a are better
than base, overall performance goes down when enabling s2pl or sos.

The true value of a new strategy, however, often does not so much lie in its absolute perfor-
mance, but in how well it can contribute to solving problems not solvable by other strategies.
To estimate such contribution, Table 1 shows the number problems uniquely solved by each
strategy, first (I) across all the strategies, for the second time (II) only for the best strategy in
each group (to prevent similar strategies from “stealing” each others uniques). We can see that
the overall winner in this regard is sos with 419 uniques by sos-all. nwc and s2a both seem
to be reasonably interesting as well. On the other hand, the value of the s2pl technique, both
in absolute terms and in the number of uniques, does not seem to be convincing.

3The default limited resource strategy [13] is sensitive to timing measurements and thus essentially non-
deterministic.

4Originally inspired by E prover [14]; to Vampire, frequency has been introduced in [5].
5Note that we count only proofs (not the found saturations), because proving is the primary mode for which

we want to find new good strategies.
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strategy refuted ∆base uniques I uniques II
base 8196 0 3 3

nwc-2.0 8513 317 14
nwc-5.0 8525 329 6
nwc-10.0 8599 403 27 251

s2a 8507 311 149 207
s2pl-on 8148 −48 11 25
s2pl-no 8053 −143 32
sos-on 5243 −2953 100
sos-all 7530 −666 298 419

Table 1: Number of problems refuted by each tested strategy within 60 s per problem.

6 Conclusion

In this short paper, we have shown that the computation of the SInE premise selection algorithm
implicitly defines a heuristical distance of input formulas and symbols from the goal. This
distance can be used to design new goal directed extensions of the search algorithm. We
proposed and implemented two such extensions, “sine to age” and “sine to predicate levels”,
and evaluated them on the TPTP benchmark. At least “sine to age” seems to be a very
promising technique, which should be further explored. In particular, equating a single step
from the goal with a one-step increase in the imposed age seems arbitrary and a different “unit
alignment” could be even more effective. As part of future work, we also plan to explore the
effect of using non-default values of the generality threshold and tolerance parameters.
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