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Abstract

This study is part of our perpetual effort to develop improved RNA secondary struc-
ture analysis tools and databases. In this work we present a new Graphical Processing
Unit (GPU)-based RNA structural analysis framework that supports fast multiple RNA
secondary structure comparison for very large databases. A search-based secondary struc-
ture comparison algorithm deployed in RNASSAC website helps bioinformaticians find
common RNA substructures from the underlying database. The algorithm performs two
levels of binary searches on the database. Its time requirement is affected by the database
size. Experiments on the RNASSAC website show that the algorithm takes seconds for
a database of 4,666 RNAs. For example, it takes about 4.4 sec for comparing 25 RNAs
from this database. In another case, when many non-overlapping common substructures
are desired, a heuristic approach requires as long as 85 sec in comparing 40 RNAs from
the same database. The comparisons by this sequential algorithm takes at least 50% more
time when RNAs are compared from the database of several millions of RNAs. The most
recently curated databases already have millions of RNA secondary structures. The im-
provement in run-time performance of comparison algorithms is necessary. This study
present a GPU-based RNA substructure comparison algorithm with which running time
for multiple RNA secondary structures remains feasible for large databases. Our new par-
allel algorithm is 12 times faster than the CPU version (sequential) comparison algorithm
of the RNASSAC website. The response time significantly reduces towards development
of a realtime RNA comparison web service for bioinformatics community.

1 Introduction
Ribonucleic acid (RNA) substructures are described by context free grammars and stochastic
context free grammars. RNA secondary structures can be represented by sequences in various
formats (e.g., dot-bracket, bpseq). In this paper, we present an improved algorithm for multiple
RNA structure comparison. As the number of compared RNAs increases, the significance of
found common substructures also increases. Yet, the computing time also increases with the
increasing number of compared RNAs.

Our algorithm benefits from a recently proposed RNA sequence representation in which
2D structural information is embedded in sequences with desirable features [1]. This new
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representation uses relative addressing between the pairs. As given in [1], it has many important
advantages with which RNA secondary substructure search is reduced to a substring search in a
single RNA or in a database of RNAs stored appropriately in a suffix array. RNA Search Submit
Annotate Compare (RNASSAC) website (Figure 1) hosts a database of structure sequences for
4, 666 RNAs obtained from RNASTRAND [2]. This website employs several tools for RNA
secondary structure analysis. It includes a search-based algorithm for multiple RNA structure
comparison problem proposed in [3]. This comparison algorithm takes several seconds for

Figure 1: RNASSAC Website, linked from http://faculty.tamuc.edu/aarslan

comparing multiple RNAs in the database of 4, 666 RNAs. A similar search-based heuristic
algorithm for finding many non-overlapping common structures takes a few minutes on the
same database [3]. When comparing many RNAs from today’s much larger databases, the
execution time takes 50% or higher more time. The required large computing effort and long
response times are still tolerated by users because the structure analysis on a larger database
yields biologically more significant results carrying more valuable information. However, for
RNA structure analysis tools to be more practical and more feasible (in terms of response
times) for very large databases, the execution times need to be reduced. By using efficient
GPU-supported algorithms we decrease the time-requirement of analysis steps on suffix arrays
that become large with increased database sizes. By following statistics from [4], for instance,
we can easily estimate that the total number of RNAs is at least thousands of times larger
than 4, 666. In our perpetual effort to develop and improve RNA secondary structure analysis
tools for large databases, we present our new multiple RNA secondary structure comparison
algorithm and initial experimental results in this work.

1.1 Multicore Computing
Computational research has benefited from scientific software toolkits utilizing central process-
ing units (CPU) as well as graphics processing units (GPU). In last two decades, affordable
CPU-GPU systems, introduced by industry leaders NVIDIA, AMD, and Intel, have been vastly
integrated many biomedical research studies. GPU-supported technology has become computa-
tional norm providing powerful computation with the ease of flexible programming on multi-core
systems. General purpose GPU (GPGPU) technology involves one or a group GPUs to perform
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computational problems traditionally developed for single thread executions on CPU. Further-
more, GPGPU programming provides the most economical way for parallel computing power.
However, this advancement comes with a price: extra time for software developers to parallelize
underlying CPU-based algorithms. The algorithm being parallelized should be modified con-
sidering hardware specification of the target GPU to have the best speedup results. To address
this issue, NVIDIA introduced Compute Unified Device Architecture (CUDA) in 2007 allowing
software developers to harness the computational capabilities of powerful graphical processing,
initially designed for video and image-processing tasks [5].

Recent studies in biomedical fields have proved that time-consuming computations can be
successfully accelerated up to 55 times [6, 7, 8, 9, 10]. RNA related bioinformatics problems also
had their share from GPU-based accelerated research. Li et al. [11] reported that the multicore
version of the cache efficient single core Nussinov RNA folding algorithm runs 1582 times as
fast as the naive single core algorithm. Another RNA folding study using the Four-Russians
method reported [12] that their method is faster than Nussinov by up to a factor of 20 and
the Frid-Gusfield method by a factor of 3. In a recent study [13], authors reported a tile-based
approximate pattern matching implementation on a NVIDIA GeForce Titan graphics card runs
up to 2.9 times faster than an implementation on Intel Xeon Phi 5110P.

This paper is part of our effort to develop a new GPU-based RNA structural analysis
framework that supports fast multiple RNA secondary structure comparison for very large
databases. Specifically, we parallelize the search-based RNA secondary comparison algorithm.
A novel GPU-based algorithm is developed and tested on known RNA structures. The run-time
efficiency of new software is recorded as 12 fold faster than its CPU counterpart.

The outline of this paper is the following: In Section 2, the primary motivation of this study
is presented: GPU-supported improved structure comparison algorithms for the fast growing
databases for RNA secondary structures. We give basic definitions and notation we use in
Section 3. We also briefly describe the sequential multiple RNA secondary structure comparison
algorithm [3] in the same section. We present our GPU-based algorithm for comparison in
Section 4. We also report our preliminary test results in this section. We summarize our results
and include our remarks in Section 5.

2 RNA Secondary Structure Databases & GPU-Support

Biomedical data are growing at accelerated pace. Cell biology databases take their share,
too. There are various websites for RNA structure analysis. For example, Gutell’s laboratory
at University of Texas [14] has an RNA database and tools for RNA analysis for ribosomal,
intron, and other RNAs. Another resource, RNA Fragment Search Engine [15], is owned and
maintained by Polish Academy of Sciences. This system has a database of RNA fragments that
can be searched online. Finally, the RNA Central portal [4] has one of the largest databases
on RNA secondary structure diagrams. Currently, it is claimed that more than seven million
structure diagrams (with general consensus) for over 2,000 RNA families are hosted from 35
different sources including Rfam, PDBe, and NCBI. It is expected that the RNA structure
database sizes will continue to increase further by including predicted structures with consensus
using structure prediction tools, such as [16, 17]. The resulting structure databases will make
the RNA structure analysis near perfect at the cost of increases in the database sizes.
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2.1 Motivation for GPUs for RNA Search & Comparison

RNASSAC website has a database stored in a suffix array which is used by its search and
comparison tools. Each RNA is a string in relative addressing based (rab) format [1]. Let R
be the number of RNAs in the database, the RNASSAC website builds a suffix array that
contains n sorted suffixes. Each row contains a pair of indices for the corresponding suffix:
one for an RNA ID, and another one for the starting position for a suffix in this RNA. Suffix
array creation is designed to be a batch operation done only in long periods, such as monthly
updated. In this framework, substructure search is a substring search operation. Let |u| denote
the length of any given string u. Searching a substructure represented by string s takes time
O(|s| log n + c), where c is the number of occurrences of s in the database. One of the most
important parts of the RNASSAC project is a comparison tool that finds the longest substruc-
ture included in all RNAs in the list. The list contains RNAs from the database, and optionally
one additional RNA not included in the database. We call this problem FindOne, which is
search-based comparison algorithm and discussed with great details in [18, 3]. FindOne runs
in time O((N + `)` log n), where ` is the length of the shortest of the N RNA strings compared.
Problem FindOne aims to find a largest substructure (longest common substring) in compared
RNA substructure. Another related problem, called FindAll, aims to find all common non-
overlapping substructures. A heuristic algorithm for FindAll proposed in [3] uses the algorithm
for FindOne as a subroutine, and requires ` times more time than that of the algorithm for
FindOne.

The complexity upper bounds reported for search and comparison algorithms in [1, 3] are
tight. A suffix array stores rows for all suffixes of given strings. Therefore for a database
that contains R RNAs, the suffix array that RNASSAC builds contains n rows such that n
is approximately `R, where ` is the average length of an RNA. The time complexity of search
and comparisons algorithms increase logarithmically in n. Based on these factors, we consider
the time requirement changes for larger databases. RNASSAC has a suffix array built from a
set of 4,666 RNAs. Substructure search takes milliseconds. The times reported on comparisons
are in seconds. For example, on the same database, the algorithm for FindOne takes 4.4
sec for comparing 25 RNAs, and the algorithm for FindAll takes 85 sec in comparing 40
RNAs. We calculate by the complexity results that for a seven million-RNA database, the time
requirement for these algorithms will be 50% more. That is for these two instances, the running
times will be approximately 6.6 sec and 127.5 sec. As complexity results indicate, comparisons
of substructures for many similar RNAs from the same family are expected to take even longer
times. We propose developing new parallel algorithms for comparison algorithms by using
GPUs. In this work we present a new such algorithm for FindOne, which will improve the
response time for FindAll that uses FinOne algorithm as a subroutine. These improvements
will improve the response time for both comparison problems.

3 Notations and Definitions

RNA sequences are strings over the alphabet {A,C,G,U}. We use RNA sequence and RNA
string, RNA subsequence and substrings interchangeably. In an RNA molecule, some nu-
cleotides may be paired. This base-paired structure is called the secondary structure of RNA. A
secondary structure contains substructure-types, such as a hairpin-loop, helix, and pseudoknot.
An RNA nucleotide sequence in the secondary structure should be read from terminal 5′ to 3′.
Similar substructures in RNA molecules point to similar functions. A dot-parenthesis [2] repre-
sentation of a structure includes pairing information in a sequence format. It uses the alphabet
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of {( , . , )}. Matching pairs of parentheses indicate bonds. Everywhere else ’.’ represents any
of the nucleotides.

We define RNA structure sequence as a string that uniquely identifies an RNA secondary
structure. Sequences in bpseq [2] and rab format [1] have this property. The relative address-
ing based (rab) format was introduced in [3]. Figure 2 demonstrates an example structure
and its representation in both bpseq and rab formats. The rab representation has two op-
tions: structure-only and structure-nucleotide representation. In structure-only representation
nucleotide information is not used. In the structure-only option, for example, the rab represen-
tation of the structure of Figure 2 is the sequence +6, +4, 0, 0, 0, −4, −6, 0, 0, +6, +4,
0, 0, 0, −4, −6. In the actual internal representation for each position, there is an integer
value obtained from the offset (distance) from the pairing position and the nucleotide type.
That means rab format stores sequences of integers of fixed size, such as four bytes. One big
advantage of the rab format is that the same (consecutive) substructure sequence appears as
the same unique string no matter where it appears in the host RNA. In Figure 3, sample com-
parison results for three RNAs are shown. Only one of these RNAs is displayed. The longest
common secondary substructure for all these RNAs is highlighted in this figure. The positions
of this common secondary structure are listed for all RNAs in the figure.

Figure 2: Illustration of one significant advantage of rab over bpseq.
This is not the case for other existing structure sequence representations, such as bpseq. The

example in Figure 2 illustrates this very useful property of rab representation. By using this
very property, the substructure search reduces to the substring search problem. The RNASSAC
project stores RNA structure sequences in a suffix array, and substructure search can be done
efficiently by performing binary search on this suffix array. Our GPU-based RNA structure
comparison algorithm uses this property, too.

Definition 1 (FindOne: RNA-Longest Common Substructure) Given a collection of N
RNA structure strings A = {r1, . . . , rN} where each ri represents an RNA secondary structure
sequence from the underlying database, find a longest substring (substructure) s that is a
common substring of all strings ri in A.

The comparison algorithm [3] of RNASSAC website takes the shortest structure sequence
from the input list of RNAs and considers every substring of this RNA structure sequence, and
determines if it is contained in structure sequences in all RNAs of the input list. This is done
by using two nested binary searches: the outer one for the maximal length, and the inner one
for determining if the substring considered is common to all RNAs in the input list. The inner
binary search performs the search on the suffix array for a taken substring from the shortest
substring of length given from the outer binary search. This search, if successful, returns a
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Figure 3: Sample results for three compared RNAs

segment from the suffix array. If this segment contains a list of RNA IDs in list A, then the
length-range is increased by the outer binary search. If the attempts for the current length in
the inner binary search is not successful, then the length-range is decreased by the outer binary
search for maximal common substring length. These two nested searches yield many substring
searches on the suffix array. Our GPU algorithm parallelizes these stream of searches.

4 GPU-Based Multiple RNA Structure Comparison

CUDA is the hardware and software architecture that enables NVIDIA GPUs to execute pro-
grams written with C, C++, Fortran, and other languages [5]. A GPU program calls parallel
kernels, which are called by a CPU (host) originated program. GPUs use the single instruction
multiple thread (SIMT) programming model in which the GPU accomplishes a computational
task using thousands of light weight threads. The CUDA compiler organizes these threads in
grids of thread blocks. Each thread within a thread block executes an instance of the same
kernel, and has a thread ID within its thread block, program counter, registers, per-thread
private memory, inputs, and output results. A thread block is a set of concurrently execut-
ing threads that can cooperate among themselves through barrier synchronization and shared
memory. Each thread block has a block ID within its grid so that the programmer can tweak
execution of all of thread in that block.

4.1 RNA Structure Comparison Algorithm in GPU

In GPU-based implementation of the FindOne problem, we adopt master-slave programming
model in which we write a program for the master computer that invokes the GPU-targeted
procedures. The key challenge in deriving high performance for the algorithm is efficiently to
minimize the memory traffic between the streaming multiprocessor and the global memory of
the GPU. This requires redesigning of the algorithms and implementation approaches, which
are the two main aims of this project. We developed the comparison framework with Anaconda
Python [19].
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The pseudocode of proposed algorithm is given in Algorithm 1. It consists of two procedures,
ParRNASSAC at line 1 and KERNEL at line 16. ParRNASSAC serves as starting point of
the algorithm and will be run on host system, i.e., CPU. It takes three arguments, two from
system resources, one from the user. D is a two-dimensional array of RNA structures as coded
in [1], SA is the suffix array, which is derived from whole RNA data set. The formation of
SA also was detailed in [1]. TA is set of user selected RNA structures, in which the search
and comparison algorithm will search for the longest common substring. We first identified IDs
of shortest RNA structure, sR in length. This is because TA cannot have a longest common
substring longer than length of sR. Based on the sR, maxL is length of D[sR]. Length of the
shortest RNA can be also found in GPU kernel but would be costly since clock rate of CPU
usually –two times faster than the GPU’s clock rate. Following finding of maxL, we call kernel
function, KERNEL.

KERNEL is a kernel function to be called by the host machine once for each user query.
It takes five pass-by-reference parameters. Three of five parameters, D, SA, and TA are also
parameters of main ParRNASSAC procedure, and already discussed in previous paragraph.
The other two of them, sR and maxL were calculated based on D, SA, and TA in ParRNAS-
SAC. The sR is ID of so-called source RNA, the shortest RNA in TA, whose substrings will
be generated to be sought in other RNAs of TA. It is not explicitly shown in the pseudocode;
however, all data points –five parameters are transferred from host system to GPU device before
running KERNEL. The kernel function starts with finding the thread specific IDs at line 17.
The number of threads is maxL.

Then, we allocate a shared array CS in GPU with maxL items. CS, being a shared memory
array, is much faster to access for all threads than any of the memory location in GPU. The size
of CS is maxL since we run maxL threads. The each thread tx accesses and updates CS[tx]
later in this procedure. The goal of the kernel is to run maxL threads in parallel and let each
thread do the following in order a) Search for longer than tx substrings in length in the set of
query RNA, that is TA, b) Register the outcome of the search in CS[tx].

The first loop iterates for each entry of suffix array, SA, which is an array structure (pro-
gramming language structures, such as struct in C), with two variables: ID and str. ID of each
entry E of SA is same as ID of RNA structure database, D. The second variable, str keeps
starting location of suffix in the corresponding RNA. We check later if this suffix is part of
sR and is longer than or equals to tx. If not, the search is skipped since the current thread,
identified by tx, search only longer than tx substrings in the TA. If line 20 evaluates true
then we create a local variable for the search string sSTR in the memory and fill it with in the
subsequent for loop. Once a thread reaches line 25, it iterates for all RNA IDs of TA, except
sR, since sR is source RNA. Once G is eligible RNA ID, we check all of its suffixes using SA.
Before that we set a boolean flag, failed to false, so that we can break the for-loop of line 31 if
substring matching is failed. To reduce computing time further, we have one more conditional
check at line 30. This is to exit the outer loop where the thread cannot find long enough
substring, coded with Gs in pseudocode, to compare with sSTR. If a thread finds sSTR in an
RNA without setting failed true, this constitutes enough condition to increase its counter by
one. Therefore, we check and accumulate number of successful searches of tx in CS[tx] at line
40. The last part of KERNEL at line 47 checks for whether or not all searches in TA find
the common substring sSTR. Since we skip to search in sR, the counter at CS[tx] returns the
size of TA less one. If this holds true, we set this counter to true. When all threads complete
their relative calculations, KERNEL returns CS, which is also pass-by-reference operation.
The procedure ParRNASSAC later iterates over RCS and reports longest common substring
found in the set of TA. This GPU-based algorithm is developed only for FindOne.
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Algorithm 1 Parallel RNASSAC
1: procedure ParRNASSAC(D, SA, TA)
2: sR← 0 . the index of shortest RNA
3: for v ← 1, |TA| do
4: if D[TA[v]] < |D[sR]| then
5: sR← v
6: end if
7: end for
8: maxL← |D[sR]|
9: RCS ← Kernel(D, sR,maxL, SA, TA)

10: for i← 0,maxL do
11: if RCS[maxL− v] = true then
12: return i
13: end if
14: end for
15: end procedure

16: procedure Kernel(D, sR, maxL, SA, TA)
17: tx← cuda.gpu() . Thread ID
18: alloc CS . cudaShared array |CS| = maxL
19: for all E ∈ SA do
20: if E.ID = sR and D[E.ID]− E.str − 1 ≥ tx then
21: init sSTR . array of search str
22: for j ← 0, tx do
23: sSTR[j]← D[sR][E.Str + j] . slicing operation
24: end for
25: for all G ∈ TA do
26: if G 6= sR then
27: for all Gs ∈ SA do
28: failed← false
29: if Gs.ID = G then
30: if D[Gs.ID]−Gs.str − 1 ≥ tx then
31: for k ← 0, tx do
32: if sSTR[k] 6= D[Gs.ID][Gs.str + k] then
33: failed← true . substring matching is failed
34: break
35: end if
36: end for
37: end if
38: end if
39: if failed = false then
40: CS[tx]← CS[tx] + 1 . accumulate number of successful searches
41: end if
42: end for
43: end if
44: end for
45: end if
46: end for
47: if CS[tx] = |TA| − 1 then
48: CS[tx]← true
49: else
50: CS[tx]← false
51: end if
52: return CS
53: end procedure
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4.2 Experimental Setup and Results
Experimental software was developed with Python v3.6 on HP Z400 workstation equipped with
Intel 2.7 GHz Xeon processors, 24 GB RAM, and NVidia Quadro FX 1800. The primary library
used in our software is Numba 1.7 [19]. The RNA dataset is downloaded from the RNASSAC
website [2] in rab format which was converted from 4,666 structure sequences originally obtained
from RNASTRAND database in bpseq format. The average length of RNA structures is 511
characters long. We randomly choose 2 to 10 structures incrementally and search for the longest
common substring in chosen structures. This process is repeated 20 times with various size of
the substrings. Correctness of GPU version of the algorithms is validated with results obtained
from serial (CPU) version of the algorithms. Figure 4 compares running time of this comparison.

Figure 4: Running time comparison of CPU- and GPU-based implementation of RNASSAC algorithm
for different size of RNA structures.

As expected GPU version of the algorithm showed almost stable running time with 0.70
sec average and 0.09 standard deviation. The slope of line regression is 0.02. CPU-based
running time is linear with the slope of 0.92, and R2 = 0.998. These results were expected
since the running time complexity of RNASSAC is O((N + `)` log n) [18], where ` is number of
RNA structure being compared. The speedup in case of substring search in 10 structures was
reported as 12.29. In summary, results show that running time complexity of substring search
and comparison significantly benefit from GPU-based parallelization.

5 Conclusion and Future Works
We develop a GPU based algorithm for search-based comparison of multiple RNA substructure
sequences for finding the largest common substructures. Our results indicate that our algorithm
speeds-up the sequential programs for the same task by 12 times or better. The same speed-up
can be observed for the comparison algorithm that finds all non-overlapping common structures
since this is achieved by calling our algorithm as a subroutine in the same number of times
both in sequential or parallel versions. These are important achievements for making and
keeping such comparisons feasible in ever-increasing large RNA secondary structures databases.
We believe that our RNA secondary structure comparison tools will be very useful for the
bioinformatics community. Our findings in developing GPU-based implementations for multiple
RNA structure comparison will be useful in other related data, text mining applications, and
in particular, in applications where suffix arrays are used.
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