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Abstract

Deep reinforcement learning has become popular over recent years, showing superiority
on different visual-input tasks such as playing Atari games and robot navigation. Although
objects are important image elements, few work considers enhancing deep reinforcement
learning with object characteristics. In this paper, we propose a novel method that can
incorporate object recognition processing to deep reinforcement learning models. This
approach can be adapted to any existing deep reinforcement learning frameworks. State-of-
the-art results are shown in experiments on Atari games. We also propose a new approach
called “object saliency maps” to visually explain the actions made by deep reinforcement
learning agents.

1 Introduction

Deep neural networks have been widely applied in reinforcement learning (RL) algorithms to
achieve human-level control in various challenging domains. More specifically, recent work has
found outstanding performances of deep reinforcement learning (DRL) models on Atari 2600
games, by using only raw pixels to make decisions [21].

The literature on reinforcement learning is vast. Multiple deep RL algorithms have been
developed to incorporate both on-policy RL such as Sarsa [30], actor-critic methods [1], etc.
and off-policy RL such as Q-learning using experience replay memory [21] [25]. A parallel
RL paradigm [20] has also been proposed to reduce the heavy reliance of deep RL algorithms
on specialized hardware or distributed architectures. However, while a high proportion of
RL applications such as Atari 2600 games contain objects with different gain or penalty (for
example, enemy ships and fuel vessel are two different objects in the game “Riverraid”), most
of previous algorithms are designed under the assumption that various game objects are treated
equally.

In this paper, we propose a new Object-sensitive Deep Reinforcement Learning (O-
DRL) model that can exploit object characteristics such as presence and positions of game
objects in the learning phase. This new model can be adapted to most of existing deep RL
frameworks such as DQN [21] and A3C [20]. Our experiments show that our method outper-
forms the state-of-the-art methods by 1% - 20% in various Atari games.

Moreover, current deep RL models are not explainable, i.e., they cannot produce human
understandable explanations. When a deep RL agent comes up with an action, people cannot
understand why it picks the action. Therefore, there is a clear need for deep RL agents to
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dynamically and automatically offer explanations that users can understand and act upon.
This capability will make autonomy more trustworthy, useful, and transparent.

Incorporating object recognition processing is very important for providing explanations.
For example, in the Atari game Ms. Pacman, the player controls Pac-Man through a maze,
eating beans and avoiding monster enemies. There are also flashing dots known as power
pellets that provide Pac-Man with the temporary ability to eat the enemies. By identifying the
different objects (Pac-Man itself, beans, power pellets, enemies, walls, etc.), the deep RL agent
can gain the potential to explain the actions like human beings.

In this paper, we develop a new method called object saliency maps to automatically
produce object-level visual explanations that explain why an action was taken. The proposed
method can be incorporated with any existing deep RL model to give human understandable
explanation of why the model choose a certain action.

Our contributions are threefold: First, we propose a method to incorporate object charac-
teristics to the learning process of deep reinforcement learning. Second, we propose a method
to produce object-level visual explanation for deep RL models. Third, our experiments show
improvements over existing methods.

2 Related Work

2.1 Deep Reinforcement Learning

Reinforcement learning is defined as learning a policy for an agent to interact with the unknown
environment. The rich representations given by deep neural network improves the efficiency of
reinforcement learning (RL). A variety of works thus investigate the application of deep learning
on RL and propose a concept of deep reinforcement learning. Mnih et al. [21] proposed a deep Q-
network (DQN) that combines Q-learning with a flexible deep neural network. DQN can reach
human-level performance on many of Atari 2600 games but suffers substantial overestimation
in some games [34]. Thus, a Double DQN (DDQN) was proposed by Hasselt et al. [34]
to reduce overestimation by decoupling the target max operation into action selection and
action evaluation. In the meantime, Wang et al. proposed a dueling network architecture
(DuelingDQN) [35] that decouples the state-action values into state values and action values to
yield better approximation of the state value.

Recent experiments of [20] show that the actor-critic (A3C) method surpasses the current
state-of-the-art in the Atari game domain. Comparing to Q-learning, A3C is a policy-based
model that learns a network action policy. However, for some games with many objects where
different objects have different rewards, A3C does not perform very well. Therefore, Lample et
al. [14] proposed a method that augments performance of reinforcement learning by exploiting
game features. Accordingly, we propose a method of incorporating object features into current
deep reinforcement learning models.

2.2 Explainable Models

There are some recent work on explaining the prediction result of black-box models. Erhan et
al. [5] visualised deep models by finding an input image which maximises the neuron activity of
interest by carrying out an optimisation using gradient ascent in the image space. It was later
employed by [15] to visualise the class models, captured by a deep unsupervised auto-encoder.
Zeiler et al. [37] proposed the Deconvolutional Network (DeconvNet) architecture, which aims to
approximately reconstruct the input of each layer from its output, to find evidence of predicting
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a class. Recently, Simonyan et al. [28] proposed saliency maps to deduce the spatial support
of a particular class in a given image based on the derivative of class score with respect to the
input image. Ribeiro et al. [24] propose a method to explains the prediction of any classifier
by local exploration, and apply it on image and text classification. All these models work at
pixel level, and cannot explain the prediction at object level.

2.3 Object recognition

Object recognition aims to find and identify objects in an image or video sequence, where
objects may vary in sizes and scales when translated or rotated. As a challenging task in the
field of computer vision, Object Recognition (OR) has seen many approaches implemented over
decades.

Significant progress on this problem has been observed due to the introduction of low-level
image features, such as Scale Invariant Feature Transformation (SIFT) [17] and Histogram of
Oriented Gradient (HOG) descriptors [4], in sophisticated machine learning frameworks such
as polynomial SVM [22] and its combination with Gaussian filters in a dynamic programming
framework [26]. Recent development has also witnessed the successful application of selec-
tive search [33] on recognizing various objects. While HOG/SIFT representation can capture
edge or gradient structure with easily controllable degree of invariance to local geometric and
photometric transformations, it is generally acknowledged that progress slowed from 2010 on-
ward, with small gains obtained by building ensemble systems and employing minor variants
of successful methods [19].

The burst of deep neural network over the past several years has dramatically improved
object recognition capabilities such as convolutional neural network (CNN) [16] and other vari-
ants [13], where the recent trend is to increase the number of layers and layer size [27], while
using dropout [9] to address the problem of overfitting. Exploration of inception layers leads
to a 22-layer deep model in the case of the GoogLeNet model [32]. Furthermore, the Regions
with Convolutional Neural Networks (R-CNN) method [7] decomposes the overall recognition
problem into two sub-problems and achieves the current state of the art performance. Re-
cently, R-CNN has been optimized to reduce detection time and formulated as “fast R-CNN”
[6], together with its various extensions [11] [8] [29].

3 Background

3.1 Reinforcement Learning Background

Reinforcement learning tries to solve the sequential decision problems by learning from the
history. Considering the standard RL setting where an agent interacts with an environment ε
over discrete time steps. In the time step t, the agent receives a state st ∈ S and selects an
action at ∈ A according to its policy π, where S and A denote the sets of all possible states
and actions respectively. After the action, the agent observes a scalar reward rt and receives
the next state st+1.

For example, in the Atari games domain, the agent receives an image input (consisting of
pixels) as current state at time t, and chooses an action from the possible controls (Press the
up/down/left/right/A/B button). After that, the agent receives a reward (how much the score
goes up or down) and the next image input.

The goal of the agent is to choose actions to maximize its rewards over time. In other words,
the action selection implicitly considers the future rewards. The discounted return is defined as

22



Object-sensitive DRL Li, Sycara and Iyer

Rt =
∑∞
τ=t γ

τ−trτ where γ ∈ [0, 1] is a discount factor that trades-off the importance of recent
and future rewards.

For a stochastic policy π, the value of an action at and the value of the states are defined
as follows.

Qπ(st, at) = E[Rt|s = st, a = at, π] (1)

V π(st) = Ea∼π(st)[Q
π(st, at)] (2)

The action value function (a.k.a., Q-function) can be computed recursively with dynamic
programming:

Qπ(st, at) = Est+1 [rt + γEat+1∼π(st+1)[Q
π(st+1, at+1)]] (3)

In value-based RL methods, the action value (a.k.a., Q-value) is commonly estimated by a
function approximator, such as a deep neural network in DQN [21]. In DQN, let Q(s, a; θ) be
the approximator parameterized by θ. The parameter θ are learned by iteratively minimizing
a sequence of loss functions, where the ith loss function is defined as:

Li(θi) = E(rt + γmax
at+1

Q(st+1, at+1; θi)−Q(st, at; θi))
2 (4)

In contrast to value-based methods, policy-based methods directly model the policy π(a|s; θ)
and update the parameters θ. For example, standard REINFORCE algorithm [36] updates the
policy parameters θ in the direction 5θ log π(at|st; θ).

Actor-critic [31] architecture is a combination of value-based and policy-based methods.
A learned value function V π(st) is considered as the baseline (the critic), and the quantity
Aπ(at, st) = Qπ(at, st)− V π(st) is defined as the advantage of the action at in state st, which
is used to scale the policy gradient (the actor). Asynchronous deep neural network version of
the actor-critic method (A3C) [20] gains state of the art performance in both Atari games and
some other challenging domains.

We will enrich these models with ways to exploit object characteristics such as the presence
and positions of objects in the training phase. Our envisioned architecture is shown in Figure. 1
and will be described in Section. 4.

3.2 Object Recognition Background

Object recognition is an essential research direction in computer vision. The common tech-
niques include gradients, edges, linear binary patterns and Histogram of Oriented Gradients
(HOG). Based on these techniques, a variety of models are developed, including template match-
ing, Viola-Jones algorithm and image segmentation with blob analysis [18]. Considering our goal
is to investigate whether object features can enhance the performance of deep reinforcement
learning algorithms for Atari games, we use template matching to extract objects due to its
implementation simplicity and good performance.

Template matching, as a high-level computer vision technique, is used to locate a template
image in a larger image. It requires two components – source image and template image [3].
The source image is the one we expect to find matches to the template image while the template
images is the patch image that is comparable to the template image. To identify the matching
area, we slide through the source image with a patch (up to down, left to right) and calculate
the patch’s similarity to the template image. In this paper, we use OpenCV [10] implement
the template matching. Specifically, we tried three different similarity measures methods. In
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the following equations, T and I denote two images while x′ and y′ are variable shift along
x-direction and y-direction respectively. The w and h respectively represent width and height
of the template image.

• Square difference matching method
Squared difference is a method that measures the pixel intensity differences between two
images [23]. It computes the summation of squared product of two images’ pixels subtrac-
tion. Generally, this similarity measure directly uses the formulation of sum of squared
error. It is chosen when speed matters.

R(x, y) =
∑
x′,y′

[T (x′, y′)− I(x+ x′, y + y′)]2 (5)

• Correlation matching method
The correlation matching method decides the matching point between source image and
template image through searching the location with maximum value in the image matrices.
It is chosen as similarity measure due to robustness [12]. However, it is computationally
expensive compared with square difference matching method.

R(x, y) =
∑
x′,y′

[T (x′, y′) · I(x+ x′, y + y′)]2 (6)

• Correlation coefficient matching method
Due to the limitation on speed of correlation matching method, correlation coefficient
was proposed by [12] that performs transformation on both T and I. The experimental
results show it perform very well and is suitable for practical applications.

R(x, y) =
∑
x′,y′

[T (x′, y′) · I ′(x+ x′, y + y′)]2 (7)

T ′(x′, y′) = T ′(x′, y′)− 1/(w · h) ·
∑
x′′,y′′

T (x′′, y′′) (8)

I ′(x+ x′, y + y′) = I(x+ x′, y + y′)− 1/(w · h) ·
∑
x′′,y′′

I(x+ x′′, y + y′′) (9)

Considering the effect of changing intensity and template size, it is commonly applied the
normalized version of the three methods above. Since accuracy is important for our task,
we adopt normalized correlation coefficient matching method in template matching, which
possesses the robustness of correlation matching method and time efficiency.

4 Our Methods

4.1 Object-sensitive Deep Reinforcement Learning Model

We propose an Object-sensitive Deep Reinforcement Learning (O-DRL) model that
utilizes object characteristics (e.g., existence of a certain object and its position, etc.) in visual
inputs to enhance the feature representation of deep reinforcement learning agents. The learned
deep network would be more sensitive to the objects that appear in the input images, enabling
the agent differentiates between “good objects” and “bad objects”. Moreover, incorporating
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Figure 1: An example of neural network architecture for Object-sensitive Deep Q-network (O-
DQN). Here, we get the screen image as input and pass it to the object recognizer to extract
object channels. Then, the combined channels are given as input to the convolutional neural
networks to predict Q-values.

object recognition is very important for providing visual explanations, which would be further
introduced in the Section. 4.2.

The key idea of the O-DRL model is to properly incorporate object features extracted from
visual inputs to deep neural networks. In this paper, we propose to use object channels as a
way to incorporate object features.

The object channels are defined as follows: suppose we have k objects detected in an
image, we add k additional channels to the original RGB channels of the original image. Each
channel represents a single type of object. In each channel, for the pixels belong to the detected
object, we assign value 1 in the corresponding position, and 0 otherwise. Through this, we
successfully encode locations and categorical difference of various objects in an image. Take
Object-sensitive Deep Q-network (O-DQN) as an example, the network architecture is
shown in Figure 1. Here, we get the screen image as input and pass it to the object recognizer
to extract object channels. We also use a convolutional neural network (CNN) to extract
image features just same as in DQN. Both object channels and the original state image are
passed through the network to predict Q-values for each action. Note that this method can
be adapted to different existing deep reinforcement learning frames, such as Object-sensitive
Double Q-Network (O-DDQN) and Object-sensitive Advanced Actor-critic model
(O-A3C). In our experiments, all the object-sensitive DRL methods perform better than their
non-object counterparts.

4.2 Object Saliency Maps

We propose a new method to produce object saliency maps for generating visual explanation
of decisions made by deep RL agents. Before the introduction of object saliency, we first
introduce pixel saliency [28]. This technique is first introduced to explain why a CNN classifies
an image to a certain category. In order to generate explanation of why an DRL agent choose
a certain action, we are interested in which pixels the model pays attention to when making
a decision. For each state s, the model conduct action a where a = argmaxa′∈AQ(s, a′). We
would like to rank the pixels of s based on their influence on Q(s, a). Since the Q-values are
approximated by a deep neural networks, the Q-value function Q(s, a) is a highly non-linear
function of s. However, given a state s0, we can approximate Q(s0, a) with a linear function in
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the neighborhood of s0 by computing the first-order Taylor expansion:

Q(s, a) ≈ wT s+ b, (10)

where w is the derivative of Q(s, a) with respect to the state image s at the point (state) s0
and form the pixel saliency map:

w =
∂Q(s, a)

∂s
|s0 (11)

Another interpretation of computing pixel saliency is that value of the derivative indicates which
pixels need to be changed the least to affect the Q-value.

However, pixel-level representations are not obvious for people to understand. See Figure 2
for example. Figure 2a is a screen image from the game Ms.Pacman. Figure 2b is the cor-
responding pixel saliency map produced by an agent trained with the Double DQN(DDQN)
model. The agent chooses to go right in this situation. Although we can get some intuition of
which area the deep RL agent is looking at to make the decision, it is not clear what objects
the agent is looking at and why it chooses to move right in this situation.

To generate human understandable explanation, we need to focus on object level like humans
do. Therefore, we need to rank the objects in a state s based on their influence on Q(s, a).
However, it is nontrivial to design the derivative of Q(s, a) with respect to the object area.
Hence, we apply the following approach: for each object O found in s, we mask the object with
background color to form a new state so as if the object does not appear in this new state. We
calculate the Q-values for both states, and the difference of the Q-values actually represents
the influence of this object on Q(s, a).

w = Q(s, a)−Q(so, a) (12)

We can also derive that positive w actually represents “good” object which means the object
gives positive future reward to the agent. And negative w represents “bad” object since after
we remove the object, the Q-value get improved.

Figure 2c shows an example of the object saliency map. While the pixel saliency map only
explain a vague region where the model is looking at, the object saliency map can reveal which
objects the model are looking at, and depicts the relative importance of each object. We can
see that the object saliency map is more clear and meaningful than the pixel saliency map.
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(a) Original State (b) Pixel Saliency Map (c) Object Saliency Map

Figure 2: An example of original state, corresponding pixel saliency map and object saliency
map produced by a double DQN agent in the game “Ms. Pacman.”

The computational cost of computing object saliency map is proportional to the number of
objects we detected. If we have k objects, the computational cost is 2k forward pass calculation
of the model, which is affordable since k is generally not too large, and one forward pass is fast
in model testing time.

5 Experiments

5.1 Baseline Methods

We implemented deep-Q networks (DQN)[21], double deep-Q networks (DDQN) [34], dueling
deep-Q networks (Dueling)[35] and advanced actor-critic model (A3C)[20] described in Sec-
tion 3.1 as baselines. We also implemented their object-sensitive counterparts by incorporating
object channels described in Section 4.1.

5.2 Experiment Settings

We use OpenAI gym[2] platform to perfoming our experiments. We choose 5 Atari 2600 games
with distinguishable objects to test our models against baselines. They are Freeway, Riverraid,
SpaceInvaders, BankHeist and Ms.Pacman.

We use the same network architecture for these DRL and O-DRL methods, shown in Fig-
ure 1. The design is a little different from the original work of DQN [21] because of better
performance achieved. There are four convolutional layers with 3 max pooling layers followed
by 2 fully-connected layers. The first convolutional layer has 32 5 ∗ 5 filters with stride 1, fol-
lowed by a 2∗2 max pooling layer. The second convolutional layer has 32 5∗5 filters with stride
1, followed by a 2 ∗ 2 max pooling layer. The third convolutional layer has 64 4 ∗ 4 filters with
stride 1, followed by a 2 ∗ 2 max pooling layer. The fourth and final convolutional layer has 64
3 ∗ 3 filters with stride 1. The first full-connected layer has 512 hidden units. The final layer is
the output layer, which differs in different models. In DQN, the dimension of the output layer
is the number of actions. In A3C, two separate output layers are produced: a policy output
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layer with the dimension of the number of actions, a value output layer that contains only one
unit.

We use 4 history frames to represent current state as described in [21]. For object repre-
sentation, we use the last frame to extract object channels. In order to make objects distinct
from each other, we do not use the reward clip strategy as described in [21]. Instead, we use
the normalized rewards corresponding to the maximum reward received in the game. This is
because the reward clip strategy assigns +1 for all rewards that are larger than 1 and -1 for all
rewards that are smaller then -1, which makes different objects hard to distinguish.

5.3 Experiment Results

5.3.1 Object Recognition Results

In order to verify the effectiveness of O-DRL methods, we need to verify the effectiveness of
object recognition processing first. We adopt template matching with correlation coefficient
matching method described in Section 3.2. We manually create template images of objects
in different games. For evaluation, we randomly select 100 game images from each of the game
and label the objects in these images.

We use precision, recall and F1 score as our evaluation metrics for object recognition. Let
TP , FP , FN denote the number of true-positive, false-positive and false-negative predictions
for all the labels, Precision = TP

TP+FP , Recall = TP
TP+FN , F1 = 2 Precision·Recall

Precision+Recall . The number
of object types in each game, as well as the precision, recall and F1 scores are reported in
Table. 1

Freeway Riverraid SpaceInvaders BankHeist Ms.Pacman
# Object types 2 4 3 3 6
Precision 1 1 1 1 1
Recall 0.96 0.88 0.94 0.96 0.92
F1 0.98 0.93 0.97 0.98 0.96

Table 1: Number of object types, precision, recall and F1 scores for 5 Atari 2600 games.

We can see from the table that the precision of our object recognition is always 1, indicating
the effectiveness of the template matching method. The F1 scores are also higher than 0.9. This
indicates that the extraction of object channels is accurate and can be applied to object-sensitve
DRL models.

5.3.2 Object-senstive DRL Results

We compare different DRL models with O-DRL models for 5 games. Each model is trained for 10
million frames. The average scores over 50 plays are presented in Table. 2. By comparing DRL
models with their object-sensitive counterparts, we can see that object-sensitive DRL models
perform better then DRL models in most of the games. All the best-performing models in each
of the game are object-sensitive. We can also observe that O-DRL models only outperform
DRL models by a small margin (1%) in the game Freeway, but by a large margin (20%) in
the game Ms.Pacman. This may because that the game Ms.Pacman contain much more object
types then the game Freeway, making object-sensitive models more effective.
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DQN O-DQN DDQN O-DDQN Dueling O-Dueling A3C O-A3C
Freeway 26.9 27.1 29.3 29.6 21.5 21.8 30.3 30.7
Riverraid 5418 5823 10324 10613 16983 18752 12312 13215
SpaceInvaders 1537 1528 2567 2585 5893 5923 23242 24027
BankHeist 183 193 987 978 1056 1098 956 1023
Ms.Pacman 1503 1593 2029 2453 1614 1827 617 829

Table 2: Average scores over 50 plays of DRL and O-DRL models trained for 10 million frames
on 5 Atari 2600 games.

5.4 Case Study - Ms.Pacman

We conduct a more detailed case study of the game Ms.Pacman to show the effectiveness of
O-DRL models as well as the object saliency maps for explaining DRL models. We choose
Ms.Pacman because it has most types of objects and it is hard to solve by DRL models. In
this game, the player controls Pac-Man in a maze, collecting dots and avoiding ghosts. The
actions contains left, right, down, up, leftup, leftdown, rightup, rightdown and nowhere, where
“nowhere” represents do not press any button and continue the previous action.

Figure. 3 shows performance of different models during training. We can see that after
about 2 million training frames, all the models converge to relative stable scores. We can also
see that O-DRL models outperform their DRL counterparts by a non-trivial margin during the
training phase.

Figure 3: Average scores played by different DRL and O-DRL models in the game Ms.Pacman
during the training process. The x-axis is the number of frames each model has been trianed
for, y-axis is the average scores over 50 plays.

We also compare the object saliency maps and decisions made by the DRL model and the
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O-DRL model. We compare the DDQN model with the O-DDQN model in this case because
they perform best in this game. We randomly sample 1000 states in a game play from human,
and compare the decisions made by both models. We also produce object saliency maps for
each model in order to see the which objects each model attend to when making decisions.

Among 1000 samples, 98% of the decisions given by both models are the same. Therefore,
we look into the remaining 2% of the samples.

Figure. 4 shows an example of different actions taken by both models and the object saliency
maps produced by both models. In this state, Pac-Man is on the right of the ghost. In order
to run away from the ghost, the human’s choice is to go right. However, the DDQN model
chooses to go left. We can see from Fig. 4b that the model does not focus on the ghost but
the bean on the left of the ghost. Therefore, it chooses to go left without noticing of the ghost.
The O-DDQN model successfully recognizes the ghost and choose to go right. We can also see
this from Fig. 4c.

More detailed examples for how object saliency maps can help explaining the decisions made
by each model can be found in the Appendix. A. These prove that the object saliency maps
can be used to visually explain why a model choose a certain action.

(a) Current State (b) DDQN object saliency map (c) O-DDQN object saliency map

Figure 4: From left to right are the current state, the object saliency map produced by the
DDQN model and the object saliency map produced by the O-DDQN model. The DDQN
model chooses to go left while the O-DDQN model chooses to go right in this situation.

6 Conclusion and Future Work

In this paper, we proved that by incorporating object features, we can improve the performance
of deep reinforcement learning models by a non-trivial margin. We also proposed object saliency
maps for visually explaining the actions taken by deep reinforcement learning agents.

One interesting future direction is how to use object saliency maps to produce more human
readable explanations like natural language explanations, for example, to automatically produce
natural language explanations like “I choose to go right to avoid the ghost”.

Another direction is to test the ability of object features in a more realistic situation. For
example, how to incorporate object features to improve the performance of auto-driving cars.
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A Examples of object saliency maps for Ms.Pacman

Figure. 5 shows another example of different actions taken by both models and the object
saliency maps produced by both models. In this state, Pac-Man is on the upside of the ghost.
The DDQN model chooses to go right. We can see from Fig. 5b that the model focus on
the beans on the right of Pac-Man. Therefore, it chooses to go right to eat the beans. The
O-DDQN model chooses to go up. We can see from Fig. 5c that the model concentrates on
the beans on the upside of Pac-Man. Therefore it chooses to go up. Both of the decisions are
reasonable becuase they both notice the ghost are on the downside of Pac-Man.

(a) Current State (b) DDQN object saliency map (c) O-DDQN object saliency map

Figure 5: From left to right are the current state, the object saliency map produced by the
DDQN model and the object saliency map produced by the O-DDQN model. The DDQN
model chooses to go right while the O-DDQN model chooses to go up in this situation.

Figure. 6 shows another example of different actions taken by both models and the object
saliency maps produced by both models. In this state, Pac-Man is on the upper-right corner.
The DDQN model chooses to go down. We can see from Fig. 6b that the model focus on the
ghosts and beans far from Pac-man. Therefore, it chooses to go down to eat the beans in the
left-down side of Pac-Man. The O-DDQN model chooses to go right. We can see from Fig. 6c
that the model concentrates on the beans on the right of Pac-Man. Also according to the game
setting, if the Pac-Man goes right, it will pass the right margin and appear in the left margin
of the screen. The model successfully captures this rule and also focuses on the beans on the
left margin of the screen.
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(a) Current State (b) DDQN object saliency map (c) O-DDQN object saliency map

Figure 6: From left to right are the current state, the object saliency map produced by the
DDQN model and the object saliency map produced by the O-DDQN model. The DDQN
model chooses to go down while the O-DDQN model chooses to go right in this situation.
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