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Abstract 

Real time flood forecasting can help authorities in providing reliable warnings to the 

public. This process is, however, non-deterministic such that uncertainty sources need to 

be accounted before issuing forecasts. In the FloodEvac project, we have developed a 

tool which takes as inputs rainfall forecasts and links a hydrological with a hydraulic 

model for producing flood forecasts. The tool is able to handle calibration/validation of 

the hydrological model (LARSIM) and produces real-time flood forecast with associated 

uncertainty of flood discharges and flood extents. In this case study, we focus on the 

linkage with the hydrological model and on the real-time discharge forecasts generated. 

1 Introduction 

Forecasting of flood events is a non-deterministic process in which uncertainty stems from different 

sources (Deletic et al., 2012). Disregarding its non-deterministic nature leads to disregarding events 

with lower probability (Leandro, Leitão, & de Lima, 2013) which may already trigger warnings to 

specific sensitive areas. In the FloodEvac project, we develop a real-time flood forecasting tool which 

is able to forecast flood discharges and flood extents with the inclusion of uncertainties. The tool is 

developed within the FloodEvac project funded by the Bundesministerium für Bildung und Forschung 

(BMBF, FKZ 13N13196 (TUM)). 
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2 Methodologies: The FloodEvac Tool 

The FloodEvac tool allows the simulation of the rainfall-runoff process while including uncertainty 

from different sources (Figure 1). The tool can be run in simulation or forecast modus. The former is 

suitable for reproducing specific flood events or for the simulation of long time series (e.g. yearly). The 

latter is suitable for real-time flood forecasting. The model chain includes a rainfall uncertainty module, 

an uncertainty and calibration module for the hydrological model, and a link to several hydraulic 

models. The three modules will now be shortly explained. 

In the rainfall module, rainfall data can be introduced in three different ways: using 1) 

observed/forecast rainfall from German Meteorological Services (Deutscher Wetterdienst, DWD), 2) 

generated rainfall based on historical data, or 3) generated rainfall based on synthetic data. Uncertainty 

can then be added to catchment rainfall based on the sequential conditional simulation (Seo, Kim, & 

Singh, 2014). 

LARSIM (Large Area Runoff Simulation Model) is the hydrological conceptual model used in the 

tool. It is suitable for the simulation of rainfall-runoff in large catchments. The soil module consists of 

three storages: upper, middle and lower soil storage which contribute to the discharge components 

modelled as a linear storage system (Figure 2 left panel). It includes 34 parameters which allow 

modelling of different processes such as direct discharge, interflow and groundwater flow (please see 

(Haag, A, M, & Bremicker, 2016) for a complete description of the parameters). The tool also includes 

a calibration module for LARSIM, based on the Shuffled Complex Evolution Algorithm (SCE-UA) 

(Deubler, 2017), which is widely used in hydrology for model calibration (Seong, Her, & Benham, 

2015). In this module, it is possible to define the calibration and validation time windows, as well as 

the calibration parameters and ranges.   

The final hydraulic module includes the linkage to the Hydro_AS-2D, a 2D fully dynamic model 

with unstructured grid, from which the flood inundation extents are generated. Other possible linkages 

include MIKE 11, MIKE Urban and HEC-RAS 2D. 

In forecast modus, the FloodEvac tool generates ensembles by sampling from LARSIM parameters 

using a beta or a normal probability distribution function. The beta function can produce skewed shapes 

of the distribution function, and hence take into account asymmetric uncertainty parameter intervals 

around the calibrated parameter set when generating the ensembles. 

 
Figure 1: FloodEvac Tool and Model chain 
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3 Case Study 

The FloodEvac tool was applied to the catchment area of the Upper.Main located in Bavaria with a 

total area of 4244 km2 (Figure 2 right panel). In this work, we are hindcasting the flood discharge of 

December 2012-January 2013 to exemplify the forecasting tool. The Hydro-AS 2D model will be 

implemented at a later stage to use the forecast discharge and predict possible inundation. For the sake 

of simplicity, the actual DWD measured rainfall is used here as a forecast data. The considered flood 

event had two peaks on 24 and 28 December respectively. The discharge was recorded at the Ködnitz 

gauge situated just upstream of the city of Kulmbach. The two peak discharges were recorded as 

64.2 m3/s and 58.4 m3/s on 24 and 28 December respectively. The uncertainty estimation in the forecast 

was done at two stages: a) rainfall (input) uncertainty and b) parameter uncertainty. 

3.1 Generation of rainfall uncertainty 

For the forecast, more than 50 points gauge rainfall station data were available at the catchment 

area, each having an hourly time step. The rainfall uncertainty module checks observed or forecast 

rainfall data at these stations and distribute the data within the whole catchment area considering 

sequential conditional geospatial simulation. 

In this method, the variable is considered as normally distributed and continuous. However, using 

geospatial simulation in case of precipitation has some challenges as due to zero precipitation (no 

rainfall) at some stations, the distribution is not normal but positively skewed. Moreover, the spatial 

distribution of rainfall is not constant but varies temporarily. To adapt these issues, a suitable mixed 

distribution is considered here using two variants. The discrete part of the distribution is empirically 

recorded via the proportion of zeros in the total sample, and the continuous part is mapped on the three-

parametric gamma distribution as well as on the basis of a nonparametric nuclear density distribution 

considering gammaMix and kdeMix. The whole geostatistical simulation is implemented using two 

different R-packages, namely gstat (Gomez-Hernandez & Journal, 1993; Pebesma, 2004) and 

RandomFields (Schalather, Malinowski, Menck, Oesting, & Strokorb, 2015). 

The LARSIM model takes input from distributed rainfall data for the catchment at a spatial 

resolution of 1 km x 1 km. At this stage, 10 rainfall simulations were considered to estimate the 

uncertainty of the spatial rainfall distribution (Figure 3). 

  

Figure 2: LARSIM water balance model (left) and Case study map of Upper-Main Catchment (right) 
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3.2 Generation of parameter uncertainty 

A sensitivity analysis was performed in LARSIM to derive the most sensitive parameters of the 

model regarding flood discharge at the upstream gages of Kulmbach (Ködnitz and Kauerndorf). Eight 

parameters were identified as most sensitive such as EQD: the index for lateral drainage to the lower 

soil storage, beta: the shape parameter of the soil-moisture – saturated-areas function, followed by BSF, 

EQB, EQI, EQD2 and Dmax (Härder, 2017). In this work, only these parameters were considered for 

uncertainty analysis out of the 34 parameters available in the LARSIM model. In a next step, the 

original model (Haag et al., 2016) currently in use by the Flood Forecast Centre at Bayerisches 

Landesamt für Umwelt (Bavarian Water Authorities) - LfU Bayern was compared with the one obtained 

 
Figure 3: Uncertainty quantification of rainfall distribution 
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using the automatic calibrated model. Since similar results were obtained between the original and the 

automated calibrated model, the original model was kept unchanged. The Upper.Main catchment area 

has 81 sub-catchments. Each sub-catchment has its own set of calibrated model parameters. Different 

sets of parameters were generated for each sub-catchments and applied accordingly for the forecast 

runs. The ensembles were generated using Monte Carlo method. The parameters and intervals were 

selected based on the sensitivity analysis of each sub-catchment. Figure 4 shows the probability 

distribution curve for the 8 selected parameters of a sub-catchment in the model area.  

 

3.3 Forecast of flood discharge 

Before the hindcasting process can start, a warm-up period is run. The model is run using observed 

precipitation and temperature data for one year of warm-up period until 49 hours before the forecast 

initialisation time. At this stage, the model uses the previously calibrated parameters. The model results 

are saved in an ‘initial state file’ at the end of the one-year warm-up simulation time. As such, we assure 

that the internal model states condition of the basins are as close as possible to the real conditions. Later, 

this initialization state is used to simulate each forecast ensemble run. However, in case of starting the 

simulation from an ‘initial state file’, it is recommended to start the flood forecasting for at least 49 

hours ahead of the initial time. Therefore, each forecast ensemble simulation was run for 63 hours; the 

first 49 hours of simulation results are deleted and the last 12 hours of forecast data are stored. In this 

process, the model collects 49 hours of observed hourly rainfall followed by 12 hours of forecast rainfall 

data. These 63 hours of rainfall data are passed through the rainfall distribution uncertainty module and 

10 different rainfall uncertainty dataset are prepared. Later, 50 different parameter sets are produced 

using parameter uncertainty module. These 50 parameter uncertainty sets are combined with the 

10 rainfall uncertainty cases linking one rainfall uncertainty scenario with every five parameter 

uncertainty sets in a sequential order, making 50 sets of hydrological models for the Upper.Main 

catchment. These 50 models are run and results of discharge datasets are saved. The total run time for 

completing this whole process was around 25 minutes in a three core desktop in parallel mode. 

As in this work, the actual measured rainfall data is used, which has a temporal resolution of one 

hour, the whole process was repeated at every one-hour interval. In the next forecast process, the model 

simulates new 50 cycles of 63 hours simulation, of which the first 48 hours are a repetition of previously 

done simulation; the 49th-hour data uses the latest available observed data and the last 12 hours data 

uses the new weather forecast. At this stage, the model uses the same parameter set which was generated 

 

 
Figure 4: Probability distribution curve of the eight considered parameters at one sub-catchment 
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at the first stage. Figure 5 shows the results of all the simulations for the flood discharge forecast at 

Ködnitz gauge point. 

 

4 Uncertainty analysis in the model results 

The quality of the forecast data is assessed from each hourly lead of the forecast (Figure 6). It can 

be seen that the inconsistency between forecast and observed data increases with increasing forecast 

lead time. It is apparent that the model is very good for forecasting flood up to 4 hours in advance. The 

difference between forecast and observed data at 5 or 6 hours lead time is comparably better than 

forecast data with lead time of 7 to 12 hours. The deviation of simulated data from the observed is 

consistent at 9 to 12 hours lead time, which indicates that after a certain lead time, the error in forecast 

becomes stable and stops increasing. 

In assessing the uncertainty of the basin response to spatial and temporal rainfall distribution, 

confidence intervals are calculated. According to the procedure described above, each temporal result 

was forecast 12 times using 50 ensembles of uncertainty runs. In this way, each temporal result is 

predicted 600 times, which are used for the statistical assessments for each time step. 

 

 
Figure 5: All forecast uncertainty results 
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A confidence interval chart is shown for all the simulated forecast data (Figure 7). We calculate the 

confidence intervals of the whole forecast data in two parts: considering a forecast lead time up to 6 

hours and 12 hours. Comparing with the observed flood discharge of the area, it can be seen that the 

model can forecast the rising limb of the flood peak fairly well. Both of the rising limbs of the observed 

flood discharge lie within the 50 percentile of the simulated results at both 6 hours and 12 hours lead 

forecasts. The peak discharge predicted in the model simulation is slightly earlier than the actual flood 

peak time. However, the uncertainty interval of the model peak is found moderately high. The falling 

limb of the flood discharge is found within the 98 percent confidence interval of the simulated 

discharges. The uncertainty is considerably lower at 6 hours lead forecast than that of 12 hours lead. 

However, all these analyses represent only one flood event. Analysing more events in a similar way 

would give a better representation of the uncertainty in the model results.  

 

 
Figure 6: Scatter plots of observed vs simulated data for each hourly forecast leads 
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5 Towards reducing uncertainty in the forecast 

This work was intended to check the effectiveness of the FloodEvac tool in real-time flood 

forecasting. The rainfall forecast is available at every hour. Considering this fact, it was intended to 

obtain forecast results within a considerable fraction of an hour. Due to available computational 

resources, this forecast was done using 50 uncertainty runs only; which took around 25 minutes. The 

forecast quality might have been improved if more uncertainty runs were used. In this section, we 

propose another option to produce similar uncertainty bands of forecast within a shorter time period. 

In this new proposed method, a pair of uncertainty ensembles is chosen within some predefined 

discharge intervals. Each possible pairs of uncertainty results are investigated to choose one pair of 

ensemble results that contains the maximum numbers of observation points within them. Later, the user 

can consider using the parameters used in preparing those two ensembles and regenerate new sets of 

normal and/or beta distribution curves and therefore predict new sets of hydrological model parameters. 

As the model receives observed discharge data at the time of forecast initialization, the parameter ranges 

can be defined considering that discharge observed at that time. 

In this work, we divide the observed discharge into seven segments with an interval of 10 m3/s 

starting from 0 discharge. One pair of ensemble is chosen for each segment based on the observed 

discharge at the forecast initiation time considering that the pair bounds the maximum numbers of 

observed discharge data. The observed discharge along with the results of these seven ensemble pairs 

are plotted in Figure 8. 

 

 
Figure 7: Confidence intervals in flood forecasting 
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In this proposed forecasting method, only one pair of uncertainty simulation run is required to 

predict the flood forecast within a given flood range. However, this method requires prior knowledge 

of the hydrological response in the catchment area before actual forecast, by running a large number of 

uncertainty based hindcast simulations. Moreover, in this work, the proposed methodology is analysed 

and applied to only a single event. It has to be compared, tested and applied to more flood events in 

order to find the best pair of parameter sets for different flood magnitudes. This will be done in the 

future works and the corresponding results will be compared. 

6 Discussion/Conclusions 

In this case study, the FloodEvac tool was able to produce real-time forecasts with uncertainty for 

the investigated flood event. It was possible to consider forecasts with a lower probability which may 

trigger warnings earlier to sensitive areas. The total number of ensembles which can be generated in 

forecasting mode is limited by the available computation time. In any case, a larger number of 

ensembles could be used depending on of available cores computation power. 
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