
EPiC Series in Computing
Volume 73, 2020, Pages 317–333

LPAR23. LPAR-23: 23rd International Conference on Logic
for Programming, Artificial Intelligence and Reasoning

An ASP-based Approach for Boolean Networks
Representation and Attractor Detection

Tarek Khaled and Belaı̈d Benhamou

Aix Marseille University, University of Toulon, CNRS, LIS, Marseille, France,
{tarek.khaled,belaid.benhamou}@univ-amu.fr

Abstract

In biology, Boolean networks are conventionally used to represent and simulate gene regulatory
networks. The attractors are the subject of special attention in analyzing the dynamics of a Boolean
network. They correspond to stable states and stable cycles, which play a crucial role in biological
systems. In this work, we study a new representation of the dynamics of Boolean networks that are
based on a new semantics used in answer set programming (ASP). Our work is based on the enu-
meration of all the attractors of asynchronous Boolean networks having interaction graphs which are
circuits. We show that the used semantics allows to design a new approach for computing exhaustively
both the stable cycles and the stable states of such networks. The enumeration of all the attractors
and the distinction between both types of attractors is a significant step to better understand some
critical aspects of biology. We applied and evaluated the proposed approach on randomly generated
Boolean networks and the obtained results highlight the benefits of this approach, and match with
some conjectured results in biology.

1 Introduction
A gene regulatory network is a collection of genes that interact with each other. Each gene contains
the information that determines the gene function. When a gene is active, a process called transcription
takes place, producing a copy of the ribonucleic acid (RNA) of the gene information. This portion of
RNA can then govern the production of a protein. A gene regulatory network is a specific biological
system that represents how the proteins/genes interact in a cell for its survival, reproduction, or death.
Several representations can be used to model gene regulatory networks [2]. One could use quantita-
tive representations. But, this approach requires numerical parameters that have first to be measured
or calculated, and are in general difficult to obtain. The other alternative is to use qualitative repre-
sentations. This solution does not require to know the parameters that are necessary for quantitative
representations[22, 7, 14]. Qualitative approaches give, in general, less precision on the dynamics of
the regulatory systems than the quantitative ones. Nevertheless, they allow capturing the most important
properties, like the attractors.

The Boolean networks have been proposed as a mathematical model for genetic networks[9, 10].
Boolean networks offer a simple and powerful tool to model genetic networks [19]. They reduce the
representation of genetic interactions into qualitative logical rules. Boolean networks have a structure
consisting of entities that correspond to genes or proteins. Each gene/protein takes a value on or off,

E. Albert and L. Kovacs (eds.), LPAR23 (EPiC Series in Computing, vol. 73), pp. 317–333

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

meaning that the gene/protein is or is not expressed. Two genes are connected if the expression of one
of them modulates the expression of the other by activation or inhibition. From a logical point of view,
a biological system can be considered as a set of interacting elements changing along a discrete-time.

Despite the simplified and qualitative modeling of the biological reality, it has been shown that
Boolean networks express and capture correctly the dynamics of gene regulatory networks that are
mostly characterized by their attractors. The attractors are the sets of states to which the system con-
verges. An attractor generally corresponds to the observed characteristics/phenotypes of a biological
system [10]. Indeed, if a network controls a phenomenon of specialization, then the cell specializes ac-
cording to the attractor towards which evolves its underlying Boolean network. That is, the cell acquires
a particular phenotype or a specific physiological function for the attractor where converges the Boolean
network. It is then essential to identify the attractors of Boolean networks to study their dynamics.

Our goal in this work is to develop an exhaustive approach to analyze the dynamics of Boolean
networks and capture all the possible, stable states and enumerating all the stable cycles. We focus
here on gene networks that are represented by graph interactions that are circuits. We consider the
asynchronous update mode and use the ASP framework to represent and solve the problems mentioned
above. ASP [16] is a declarative problem-solving paradigm, resulting from logic programming and
non-monotonic reasoning. Several answer set solvers [15, 4, 21] are available. They provide a variety of
constructs and features for problem modeling [3], helping the user to express problems more naturally
and solve them efficiently.

In this work, we use the method introduced in [13, 11] to deal with gene networks. This method
relies on a Boolean enumeration process defined for the ASP paradigm according to the semantic intro-
duced in [1]. This semantics guarantees for any consistent logical program, the existence of extensions
or models explaining the considered program. Some of these extensions correspond to stable models
and the other ones to extra-models. The extra-models correspond to extra-extensions that are not cap-
tured by the stable model semantics [5]. We will see that the extra-models play an essential role in the
approach to encode the stable cycle attractors of Boolean networks and the representation of interaction
graphs as logic programs interpreted in the semantics introduced in [1] give some formal results that
we use to identify the attractors of the networks. Based on these formal results, we designed an algo-
rithm for enumerating all the attractors. The detection of attractors is done without going through the
simulation of Boolean networks, unlike the approach proposed in [12].

The remainder of the paper is organized as follows: We start by recalling the preliminaries of the
used ASP semantics and the Boolean networks in Section 2. In Section 3, we propose a new approach
for attractor search and enumeration. We study the relationships between the transition graph and the
logical representation of its corresponding interaction graph in Section 4. We evaluate in Section 5 our
approach on Boolean networks generated randomly. We conclude the work and give some perspectives
in Section 6,.

2 Preliminaries

2.1 Boolean Networks

Let V = {v1, ..., vn} be a finite set of Boolean entities vi ∈ {0, 1} (1 for the value true and 0 for the value
false) representing genes in regulatory networks. A configuration x = (x1, . . . , xn) of the system is the
assignment of a truth value xi ∈ {0, 1} to each element of V . The set of all configurations [8], also called
the space of configurations, is denoted by X = {0, 1}n. The dynamics of such a system is expressed by
a so called global transition function f , and an updating mode that define how the elements of V are
updated over time. The global transition function f is defined as f : X → X such that x = (x1, . . . , xn)

318

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

7→ f (x) = (f1(x), . . . , fn(x)), where each function fi1 : X → {0, 1} is a local transition function that gives
the evolution of the state xi of the gene vi along time. Boolean networks may be seen as abstractions for
gene regulatory networks where the boolean variables xi represent the state of the genes vi. The value
true for xi (xi = 1) means that the corresponding gene is active, the value false (xi = 0) means that the
gene is inactive.

There are several update modes, and the most known ones are the synchronous and the asynchronous
modes. In the synchronous mode, all the components are updated simultaneously at each step. Con-
sequently, each state has, at most, one successor. In the asynchronous mode, only one variable can be
updated at each step, and each state can have more than one successor. It has been argued in biology
that the asynchronous mode is closer to real biological phenomena than the synchronous one. Indeed,
the state changes occur at variable speeds and are rarely simultaneous. But, due to its complexity, fewer
studies have been done for the asynchronous mode compared with the synchronous one. It is for this
reason that we have chosen here to study the dynamics of asynchronous Boolean systems.

2.1.1 Transition graphs

The dynamic of a Boolean network is naturally described by a transition graph TG that is characterized
by a transition function f and an update mode, formally:

Definition 1. Let X = {0, 1}n be the configuration space of a Boolean network, f : X → X its associate
global transition function and fi : X → X, ∈ {1, . . . , n} are the local transition functions forming the
function f . The transition graph representing the dynamic of f is the oriented graph TG(f) = (X,T (f))
where the set of vertices is the set of all configurations of X and the set of arcs is T (f) = {(x, y) ∈
X2 | x , y, x = (x1, . . . , xi, . . . , xn), y = (x1, . . . , fi(x), . . . , xn)}

The asynchronous mode is an update in which only one component of the configuration x is updated
at each time. That is, only one local transition function fi is applied on its corresponding state gene xi

at each time. In the asynchronous mode, no assumption is formulated on the updating periods over the
time. The different element of x could be updated at different time intervals. Therefore, the transitions
are not deterministic. There may be several possible successor configurations for a given configuration
representing a node in the transition graph.

An orbit in TG(f) is a sequence of configurations (x0, x1, x2, ...) such that either (xt, xt+1) ∈ T (f)
or xt+1 = xt when there is no successors for xt. A cycle of length r is a sequence of configurations
(x1, . . . , xr, x1) with r ≥ 2 whose configurations x1, . . . , xr are all different. We can now define the
meaning of an attractor in dynamical systems. A state / configuration x = (x1, . . . , xn) of the transition
graph TG(f) is a stable state / configuration when ∀xi ∈ x, xi = fi(x), thus x = f (x). A stable state /

configuration x = (x1, . . . , xn) forms a trivial attractor of TG(f). A sequence of states / configurations
(x1, x2, . . . , xr, x1) forms a stable cycle of TG(f) when ∀t < r, xt+1 is the unique successor of xt and
x1 is the unique successor of xr. A stable cycle in TG(f) forms a cyclic attractor. In the following,
when there is no confusion, we represent the set of genes V = {v1, v2, . . . , vn} by only their numbers
V = {1, 2, . . . , n}.

Example 1. Consider V = {1, 2, 3}, X = {0, 1}3 and the two following global transition functions f and
g defined as f (x1, x2, x3) = (x3,¬x1, x2) and g(x1, x2, x3) = (¬x3,¬x1, x2). The two transition graphs
corresponding to both f and g are given in Figure 1. For each arc (x, y) of both transition graphs, if x , y
then the configuration x differs from the configuration y by a single component. TG(g) has two stable
configurations (100) and (011)) illustrated in bold in Figure 1 (b). Both simple attractors could be writ-
ten as (1,¬2,¬3) and (¬1, 2, 3) when considering the corresponding genes . TG(f) has a stable cycle

1 fi(x) represents the local change that is carried on the state xi of the gene vi

319

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

a:(TG(f))
b:(TG(g))

Figure 1: The transition graphs of a positive (b) and a negative (a) Boolean circuits of size 3

((000), (010), (011), (111), (101), (100)) of six configurations pictured in bold in Figure 1 (a). This
cycle attractor could be seen as ((¬1,¬2,¬3), (¬1, 2,¬3), (¬1, 2, 3), (1, 2, 3), (1,¬2, 3), (1,¬2,¬3))
when considering the genes.

2.1.2 Interaction graphs

Transition graphs represent an excellent tool for studying the dynamic behavior of an update function
corresponding to a Boolean network. However, in practice, biological data comes from experiments that
generally give only correlations between the genes, but nothing on the dynamic of the network. Gene
correlations in a gene network are classically represented by an interaction graph which is a directed
graph where the arcs are labeled by the sign - or +.

Definition 2. An interaction graph is a signed-oriented graph IG = (V, I) where V = {1, . . . , n} is the
set of vertices and I ⊆ V × {+,−} × V is the set of signed arcs.

Remark 1. The vertices of the interaction graph represent the different genes of the gene regulatory
network and the arcs express the interactions between them. An arc that is labeled by + is said to be
positive, it denotes a positive gene interaction, while an arc that is labeled by - is said to be negative
and it encodes a negative gene interaction.

Definition 3. A circuit of the interaction graph IG = (V, I) of size k is a sequence C = (i1, i2, . . . , ik, i1)
such that (i j, {+,−}, i j+1) for all j ∈ {1, . . . , k − 1} and (ik, {+,−}, i1) are arcs of the graph IG. If all the
vertices of C are distinct, then C is said to be elementary. If the number of arcs labeled by the sign ”-”
(negative arcs) is even (resp. odd), then the circuit C is positive (resp. negative)

The interaction graph is a static representation of the regulations between the genes. Each node vi

of the interaction graph is a Boolean variable that represent the state of gene i in the network. More
precisely, if vi = 1 (resp. vi = 0)), then the gene i is active (resp. inactive). A positive (resp. a negative)
arc (vi,+, v j) (resp. (vi,−, v j)) defined from the node vi to the node v j means that the gene i is an activator
(resp. or an inhibitor) of the gene j. In the following, when there is no confusion we will lighten the
notation by simply writing i to express the node vi.

Example 2. Consider the Boolean network having the set of genes V = {1, 2, 3}, a configuration space
X = {0, 1}3 and two global transition functions f and g defined as f (x1, x2, x3) = (x3,¬x1, x2) and
g(x1, x2, x3) = (¬x3,¬x1, x2). Figure 2 shows the interaction graphs corresponding to both f and g.
We can see that the function f induces a negative circuit of size 3 (Figure 2 (a)) and g induces a positive
circuit of size 3 (Figure 2 (b)). These two circuit interaction graphs correspond to the transition graphs
showed in Figure 1.

320

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

a:(IG(f)) b:(IG(g))

Figure 2: The two circuit interaction graphs corresponding to the global transition functions f and g

The interaction graphs are more compact than the transition graphs, thus more readable. But, un-
like the transition graph, they give only static information about the interactions. In the framework
of Boolean networks, many works aim to understand the formal relationships between interaction and
transition graphs. An important research topic deals with the construction of transition graphs by using
only their transition functions and their corresponding interaction graphs.

An interaction graph reduced to only one self-activating gene forms a positive circuit of length 1.
If the gene is inactive, then it remains inactive forever. Inversely, if it is active, then the gene remains
active all the time. Thus, its corresponding transition graph should have two stable configurations, one
where the gene is active and the one other where it is inactive. This property had been generalized to
interaction graphs forming a positive circuit of any size. That is, each gene of a positive circuit acts
on itself positively through all the interactions of the circuit. The state of each gene can then stabilize
in an active or a passive state. However, the state on which a gene i stabilizes depends on the state on
which the gene j preceding i in the circuit stabilizes. For instance, if the interaction j to i is positive,
and j stabilizes in an active state, then i should stabilize on an active state. Otherwise, if j stabilizes in
an inactive state, then i should stabilize on an inactive state. It follows that whatever the length of the
circuit, there are only two possible, stable configurations.

On the other hand, an interaction graph containing only one self-inhibiting gene forms a negative
circuit of length 1. Intuitively, if the gene is active, then it inhibits itself. However, if the gene is inactive,
it shall lead to its activation. It is understood that the situation of the gene oscillates between the two
states. This property is conserved for interaction graphs forming negative circuits of any lengths. Each
gene acts on itself via the interactions of the circuit, and its state oscillates between positive and negative.

The authors in [17] show that a positive circuit of size n admits two attractors in the asynchronous
update mode, namely two stable configurations x and ¬x of size n where ¬x is the Boolean complemen-
tary configuration of x obtained by complementing each gene state in x. On the other hand, a negative
circuit of size n admits only one attractor in the asynchronous update mode corresponding to a stable
cycle formed by 2n configurations representing its length. From a biological point of view, the faculty of
having several stable configurations or multi-stationarity can explain the ability of some cells to acquire
certain phenotypes transmissible over many generations. Otherwise, negative circuits are related to the
presence of stable cycles. These cycles allow the representation of the phenomena of homeostasis. The
role of this phenomenon is to maintain some key factors around an optimal value (e.g., temperature,
blood glucose).

2.2 Answer Set Programming

2.2.1 The new semantics for general programs

A general logic program π is a set of rules of the form r : A0 ← A1, A2, ..., Am, not Am+1, ..., not An, (0 ≤
m < n) where Ai∈{0...n} is an atom and not the symbol expressing the negation as failure. The positive

321

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

body of the rule r is body+(r) = {A1, A2, . . . , Am}, its negative body is body−(r) = {Am+1, Am+2, . . . , An}

and A0 is its head. Several semantics are introduced in ASP to give a meaning to logic programs. In
general the semantics are represented by the models that it considers. The stable models semantics [5]
is one of the most used in ASP. A new semantics for general logic programs is proposed in [1]. This
semantics captures the stable models semantics and extends it. It is based on a classical propositional
language L where two types of variables are defined. The subset of classical variables V = {Ai : Ai ∈ L}
and the subset of extra-variables nV = {not Ai : not Ai ∈ L}. For each variable Ai ∈ V, there is a correspond-
ing variable not Ai ∈ nV designing a kind of a weak negation by failure of Ai. A connection between
the two types of variables is expressed by the addition to the language L of an axiom expressing the
mutual exclusion between them. This axiom of mutual exclusion is expressed by a set of binary clauses
ME = {(¬Ai ∨ ¬not Ai) : Ai ∈ V}. A general logic program π={r : A0 ← A1, A2, ..., Am,not Am+1, ..., not An},
(0 ≤ m < n) is expressed in the propositional language L by a set of Horn clauses:

HC(π) = {
⋃
r∈π

(A0 ∨ ¬A1∨, ...,¬Am ∨ ¬not Am+1, ...,¬not An)} ∪ ME = {(¬Ai ∨ ¬not Ai) : Ai ∈ V} .

The strong backdoor (STB) [23] of the logic program π is formed by the literals of the form not Ai that
occur in the negative bodies of its rules. Formally, it is defined by S T B = {not Ai : ∃r ∈ π, Ai ∈

body−(r) ⊆ nV}. Given a program π and its STB, an extension of HC(π) with respect to the STB, or
simply an extension of the pair (HC(π), S T B) is the set of all consistent clauses derived from HC(π)
when adding a maximal set of positive literals not Ai ∈ S T B to HC(π). Formally:

Definition 4 (see [1]). Let HC(π) be the Horn CNF encoding of a logic program π, S T B its strong
backdoor and S ′ ⊆ S T B. The set E = HC(π) ∪ S′ of clauses is then an extension of (HC(π),STB) if the
following conditions hold

1. E is consistent,

2. ∀not Ai ∈ STB − S′,E ∪ {not Ai} is inconsistent.

It is shown in [1] that each consistent HC(π) admits at least an extension with respect to the corre-
sponding STB, formally:

Proposition 1 (See [1]). Let π be a logic program and S T B its strong backdoor. If HC(π) is consistent,
then there exists at least an extension of the pair (HC(π), S T B).

It is shown in [1], that the set of stable models of a logic program π is in bijection with the set of
extensions E of HC(π) that satisfy the discriminant condition (∀Ai ∈ V, E |= ¬not Ai ⇒ E |= Ai). The
two main proved theoretical properties are given in the two following theorems:

Theorem 1 (See [1]). If X is a stable model of a logic program π, then there exists an extension E
of (HC(π), S T B) satisfying the discriminant condition (∀Ai ∈ V, E |= ¬not Ai ⇒ E |= Ai) such that
X = {Ai ∈ V : E |= Ai}.

Theorem 2 (See [1]). If E is an extension of (HC(π), S T B), that verifies the discriminant condition
∀Ai ∈ V, E |= ¬not Ai ⇒ E |= Ai, then X = {Ai : E |= Ai} is a stable model of π.

Example 3. Consider the logic program π = {q ← not r; r ← not q; p ← not p; p ← not r}.
The Horn clausal representation of the logic program π is formed by the set HC(π) = CR ∪ ME where
CR = {q ∨ ¬not r , r ∨ ¬not q , p ∨ ¬not p , p ∨ ¬not r}, ME = {¬a ∨ ¬not a,¬r ∨ ¬not r,¬p ∨ ¬not p} and
its strong backdoor is given by S T B = {not r, not q, not p}. We can see that (HC(π), S T B) admits two
extensions E1 = HC(π)∪{not r} and E2 = HC(π)∪{not p}. Indeed, E1 and E2 are maximally consistent
with respect to the set S T B. We can deduce by unit resolution that E1 |= {¬r, q, p,¬not q,¬not p} and
E2 |= {¬not r, r,¬q,¬not p,¬p}. The extension E1 satisfies the discriminant condition, but E2 does
not. Thus, the logic program has one stable model M1 = {p, q} deduced from E1 by unit resolution and

322

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

the extra-extension E2 induces an extra-model M2 = {r} where r is true and both p and q are false.
The stable models of π are in bijections with the extensions of (HC(π), S T B) satisfying the discriminant
condition.

2.2.2 How the semantics is applied for extended programs

General logic programs allow modeling various problems. However, it turns out that many situations re-
quire classical negation. Classical negation is a concept that is extremely necessary when real problems
need to be modeled in a declarative way. The semantics of an extended logic program can be defined
by its reduction to a general program [6]. This reduction removes the classical negation, and then, one
could use the semantic summarized previously for general programs [1] to deduce the answer sets of the
input extended logic program. An extended logic program is a set of rules of the form:
r : L0 ← L1, L2, ..., Lm, not Lm+1, ..., not Ln, (0 ≤ m < n) where Li∈{0...n} are literals (Atoms Ai or their
negations ¬Ai). To reduce an extended logic program π into an equivalent general logic program π′,
one has to replace any negative literals ¬L appearing in π by a new atom L′ in π′, then add the integrity
constraint rule (← L, L′) which prohibits L and L′ to be true in the same model of π′. This avoid to L
and ¬L to be true in the same model of the extended logic program π. Thus, we have just to compute
the stable models of the resulting general program π′ from which we can deduce the answer sets of the
original extended program π.

Example 4. Let π = {b← not¬b , a; ¬b← not b; a← not¬a} be an extended logic program. The
general logic program resulting from the translation of π is π′ = {b ← not b′, a; b′ ← not b; a ←
not a′; ← a, a′; ← b, b′}. The Horn clausal representation of the logic program π′ is HC(π′) =

RU(π′)∪ME(π′) where RU(π′) = {b∨¬not b′∨¬a, b′∨¬not b, a∨¬not a′, ¬a∨¬a′, ¬b∨¬b′} and ME(π′) =

{¬a ∨ ¬not a, ¬b ∨ ¬not b, ¬a′ ∨ ¬not a′,¬b′ ∨ ¬not b′}. Its strong backdoor is S T B = {not a′, not b, not b′}.
We can see that (HC(π′), S T B) admits two extensions E′1 = HC(π′)∪ {not b, not a′} and E′2 = HC(π′)∪
{not a′, not b′}. Both extensions satisfy the discriminant condition. Thus, the logic program π′ has two
stable models M′1 = {a, b′} and M′2 = {a, b} that are deduced from E1 and E2. It results that the original
program π admits the two answer sets M1 = {a,¬b} and M2 = {a, b}.

3 Representing interaction graphs as logic programs

We have seen that a dynamic of a Boolean network is represented by a transition graph TG, and the static
interactions between genes are represented by an interaction graph IG. An important subject of study is
to make formal links between these two representations. In what follows, we show how an interaction
graph IG is expressed as a logic program PIG given in its Horn clausal form HC(PIG). We shall prove
the properties related to the extensions of HC(PIG). These properties are used to study the relationship
between HC(PIG) and the corresponding transition graph TG. We will show how to find stable states and
stable cycles of the transition graph using merely PIG and its features. The Boolean network formalism
associates each entity i ∈ {1, . . . , n} of the regulatory network with a Boolean variable vi. To lighten the
notation, we use i instead of vi when there is no confusion.

In [20], the authors used the Hypothesis Logic [18] to represent the interaction graph. This non-
monotonic framework is powerful for knowledge representation, but does not contain effective algorith-
mic tools. To address this situation, we choose the ASP framework and the semantics introduced in [1]
that give a good compromise between the efficiency and the power of expressiveness. The ASP solver
[13] that we use here to compute the attractors of Boolean networks is based on the same semantics [1]
that we used to express them.

323

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

Definition 5. Given an interaction graph IG of a Boolean network representing a gene regulatory
network, a logic program PIG representing IG and a gene i, we define the following:

• i means that the gene i is active in the cell.

• ¬i means that the gene i is not active in the cell.

• not ¬i (resp. ¬not ¬i) means that the cell gives (resp. does not give) the permission to activate i.
In other words, the cell has (resp. has not) the ability to activate i.

• not i (resp. ¬not i) means that the cell gives (resp. does not give) the permission to disable i. In
other words, the cell has (resp. has not) the ability to inhibit i.

Definition 6. The translation of IG into a logic program PIG is done by transcribing every arc in IG
into the following pair of rules:

• A positive arc (i,+, j) is expressed by the rules { j← not ¬i, ¬ j← not i}

• A negative arc (i,−, j) is expressed by the rules { j← not i, ¬ j← not ¬i}

Example 5. The interaction graph of Figure 2 (b) representing the positive circuit is expressed by an
extended logic program: PIG(g) = {2 ← not 1, ¬2 ← not ¬1, 3 ← not ¬2, ¬3 ← not 2, 1 ←
not 3, ¬1← not ¬3}. The negative circuit of Figure 2 (a) is translated into the extended logic program:
PIG(f) = {2← not 1, ¬2← not ¬1, 3← not ¬2, ¬3← not 2, 1← not ¬3, ¬1← not 3}.

The extended logic program PIG generated is translated into a general logic program P′IG that is
expressed by a set of Horn clauses HC(P′IG) in the used semantics [1]. An extension of the pair
(HC(P′IG), S T B) is the set of all consistent clauses derived from HC(P′IG) when adding a maximal
set of positive literals not Ai ∈ S T B to HC(P′IG). In this context, the STB set stands for a collection of
permission to activate a gene j (Resp. to inhibit a gene j). In the sequel, we will always consider the
horn clausal representation HC(P′IG) instead of the logic program P′IG that we denote only by HC(PIG)
when there is no confusion. We will also say simply extensions of HC(PIG) to mean extensions of
(HC(P′IG), S T B).

In general, it is permitted to have both not ¬i and not i in the used semantics, but here from the
biological point of view we cannot give both the permission to activate a gene j and to inhibit it at the
same time. Proposition 2 below expresses this biological aspect:

Proposition 2. Let HC(PIG) be a logic program representing the interaction graph IG. Then, For every
i ∈ V = {1, . . . , n}, ¬(not ¬i ∧ not i) holds.

Proof. By definition, if IG contains an arc (i, {+,−}, j), then the translation of this arc, induces two sets
of clauses { j ∨ ¬not ¬i, ¬ j ∨ ¬not i} or { j ∨ ¬not i, ¬ j ∨ ¬not ¬i}. In the both cases, if not ¬i ∧ not i
holds, then, we infer j ∧ ¬ j. Thus, we get an inconsistency. �

Proposition 3. Let IG be an interaction graph whose logic encoding is HC(PIG), we have the following:

1. HC(PIG) is consistent.

2. HC(PIG) has at least one extension.

Proof. 1. The encoding HC(PIG) is formed by a set of binary Horn clauses. That is, each clause
contains at least one negative literal. The assignment of all literals to false is then a model of
HC(PIG). Thus, HC(PIG) is consistent.

324

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

2. Since HC(PIG) is consistent, it results from Proposition 1 that HC(PIG) has at least one extension.
�

Definition 7. Let IG be an interaction graph having the set of entities V = {1, ..., n} and E be an
extension of HC(PIG) obtained by adding to HC(PIG) a maximal consistent set of literals {not i} or
{not ¬i}, with i ∈ {1, . . . , n}. Then, we have the following definitions:

1. E is complete if for all i ∈ V, not ¬i ∈ E or not i ∈ E

2. The entity i ∈ V is free in E if i < E and ¬i < E. Otherwise, i is linked in E.

3. The degree of freedom of E (denoted deg(E)), is the number of free element i ∈ V in E.

4. The mirror of E = HC(PIG) ∪ {not j| j ∈ {1 . . . n,¬1, . . .¬n}} (denoted mir(E)), is defined as
mir(E) = HC(PIG) ∪ {not ¬ j| j ∈ {1 . . . n,¬1, . . .¬n}}.

Proposition 4. Let HC(PIG) be the logic program representing the interaction graph IG and E an
extension of HC(PIG). The mirror of E is also an extension of HC(PIG).

Proof. By definition, if IG contains an arc (i, {+,−}, j), then its encoding in HC(PIG) includes both sets
of clauses { j∨¬not ¬i, ¬ j∨¬not i} or { j∨¬not i, ¬ j∨¬not ¬i}. An extension is the set of all consistent
clauses derived from HC(PIG) when adding a maximal set of positive literals not i to HC(PIG). If we
inverse each literal not i in the extension i.e., we replace not i (resp. not ¬i) by not ¬i (resp. not i), then
we have two cases: the first case corresponds to the presence of a positive arc in the interaction graph
IG. In this case, we infer j when not ¬i holds, or ¬ j if not i holds. The second case corresponds to
the presence of a negative arc in the interaction graph IG. In this case, we infer ¬ j when not ¬i holds
and infer j when not i holds. Thus, it is trivial to see that the extension E and its mirror mir(E) are
symmetrical. It results that mir(E) is an extension too. �

Now we show that in some particular interaction graphs IG including circuits, complete extensions
HC(PIG) are of degree zero and induce answer sets of the logic encoding HC(PIG).

Proposition 5. Let IG be an interaction graph, and E an extension of HC(PIG). If every node of IG has
at least one incoming arc, then any complete extension of HC(PIG) is of degree 0.

Proof. Let E be a complete extension of HC(PIG). To prove that E is of degree 0, we have to prove that
each variable j of HC(PIG) is linked in E. In other words, for each node j in the interaction graph IG,
we have either ¬ j ∈ E or j ∈ E. By the hypothesis, j has a positive/negative incoming arc (j,+/−, i) in
IG. If the arc is positive, then it is expressed by the pair of clauses { j ∨ ¬not ¬i, ¬ j ∨ ¬not i }. Since
E is complete, we have either not i ∈ E or not ¬i ∈ E. If not ¬i ∈ E, then j is inferred (j ∈ E). If
not i ∈ E, then ¬ j is inferred (¬ j ∈ E). The case of a negative arc is treated in the same way. We will
have the rules { j ∨ ¬not i, ¬ j ∨ ¬not ¬i }. If not ¬i ∈ E, then we infer ¬ j and if not i ∈ E, then we
derive j. Therefore, for all the assumptions we infer either j or ¬ j. Thus, each element j is linked in E
and the degree of E is 0. �

Proposition 6. Let IG be an interaction graph, if any node of IG has at least one incoming arc, then
any complete extension of HC(PIG) corresponds to an answer set of HC(PIG).

Proof. Let E be a complete extension of HC(PIG). E corresponds to an answer set if for any node i, the
discriminant condition holds for both i and ¬i. That is both conditions (1) ¬not i ∈ E ⇒ i ∈ E and (2)
¬not ¬i ∈ E ⇒ ¬i ∈ E hold. Since E is complete, then it is of degree 0 (Proposition 5). It results that
either i or ¬i is in E. We have two cases:

325

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

• If we have i ∈ E. Then, (1) is trivially verified. According to the mutual exclusion ME =

{(¬i ∨ ¬not i)}, we obtain ¬not i ∈ E. In this case, we have ¬i < E and suppose now that
¬not ¬i ∈ E, this means that not ¬i < E. As E is complete, we have not i ∈ E, and this
contradicts the fact that ¬not i ∈ E. Thus, the condition (2) is verified.

• If we have ¬i ∈ E, then the condition (2) is trivially verified. According to the mutual exclusion
ME, we obtain ¬not ¬i ∈ E. In this case, we have i < E and now suppose that ¬not i ∈ E, thus
not i < E. As E is complete, then not ¬i ∈ E, and this contradicts the fact that ¬not ¬i ∈ E.
Therefore the condition (1) is verified.

Since E verifies the discriminant condition in both cases, then E induces an answer set of HC(PIG)
(Theorem 2). �

Now, we will prove that any answer set of HC(PIG) correspond to an extension of degree 0.

Proposition 7. Let IG be an interaction graph, if any node of the interaction graph IG has at least one
incoming arc, then any answer set of HC(PIG) corresponds to an extension E of degree 0.

Proof. Let E be an extension inducing an answer set of HC(PIG). By definition, E is maximally con-
sistent with respect to the literals of the form not i ∈ E or not ¬i ∈ E and verifies the discriminant
conditions (a)¬not i ∈ E ⇒ i ∈ E and (b)¬not ¬i ∈ E ⇒ ¬i ∈ E corresponding to both i and ¬i. The
extension E induces then an answer set of HC(PIG). We have to prove that for all i ∈ HC(PIG) we have
either i ∈ E or ¬i ∈ E. There are three study cases:

1. The case where not i ∈ E and not ¬i < E. It results from Proposition 2 that ¬not ¬i ∈ E. Then,
from the discriminant condition (b) we get ¬i ∈ E .

2. The case where not ¬i ∈ E and not i < E. From Proposition 2 we get ¬not i ∈ E. Thus, i ∈ E
since the condition (a) holds.

3. The case where not i < E and not ¬i < E. In this case, we have not i∧E |= � and not ¬i∧E |= �.
Thus, E |= ¬not i and E |= ¬not ¬i. From (a) and (b), we have E |= i and E |= ¬i. Thus, we get
an inconsistency that contradicts the fact that E is an extension.

It results that only the first and the second case are possible. Thus, we have either i ∈ E or ¬i ∈ E. �

In what follows, we show that for an interaction graph IG representing a positive circuit of n nodes,
the corresponding logic encoding HC(PIG) admits two answer sets of n elements.

Proposition 8. If the interaction graph IG is a positive circuit of n entities, then its logical form HC(PIG)
has two extensions that induce two answer sets of size n.

Proof. The proof is based on the results of Proposition 6 and the fact that in a positive circuit each gene
acts positively on itself through the circuit. Indeed, if we give at the beginning the authorization to
activate the gene i (by supposing not ¬i) then we will end up deducing that i is active, conversely if we
initially give the authorization to deactivate i (by supposing not i) then we will deduce that i is inactive
(we get ¬i). We can then construct two complete extensions of degree 0. The first one is made by
supposing at the beginning the literal not ¬i and the second one is its mirror extension that is obtained
by supposing at the beginning the literal not i. Both extensions are complete and are of degree 0. As
the two extensions are complete and of degree zero, we deduce from Proposition 6 that each of them
induces a stable model of HC(PIG) of size n. �

326

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

Example 6. Consider the extended logic program of Example 5 expressing the interaction graph of
Example 2 representing the positive circuit of size 3 (Figure 2(b)):
PIG(g) = {2← not 1, ¬2← not ¬1, 3← not ¬2, ¬3← not 2, 1← not 3, ¬1← not ¬3}.
PIG(g) is translated to the equivalent general program:
P′IG(g) = {2← not 1, 2′ ← not 1′, 3← not 2′, 3′ ← not 2, 1← not 3, 1′ ← not 3′}.
HC(P′IG(g)) has two extensions E1 = HC(P′IG(g)) ∪ {not 1, not2′, not3′} and E2 = HC(P′IG(g)) ∪
{not 1′, not2, not3} that correspond to two stable models. E1 and E2 are two extensions that verify the
two discriminant conditions: ¬not i ∈ E ⇒ i ∈ E and ¬not i′ ∈ E ⇒ i′ ∈ E for all i. We remark that E1
is complete because for all i ∈ HC(P′IG(g)), either not i′ (not ¬i) belongs to E1 or not i belongs to E1.
Also, we have either i ∈ E1 or i′ = ¬i ∈ E1 for all i ∈ HC(P′IG(g)), meaning that the degree of freedom
of E1 is 0.

The extension E2 is the mirror of E1. The stable models induced by E1 and E2 are M′1 = {1′, 2, 3}
and M′2 = {1, 2′, 3′}. The corresponding answers sets of the extended program PIG(g) are M1 =

{¬1, 2, 3} and M2 = {1, ¬2, ¬3}. We can see that the two previous answers sets correspond to the two
stable configurations of the transition graph (Figure 1-(b)) of the positive circuit of Example 2.

Figure 3: (a) IG(f), (b) Construction of E1 (c) The graph of M1

An intuition of the computation of E1 is given by the construction process described in Figure 3(b).
The interaction graph is depicted in Figure 3(a) while Figure 3(b) gives the different construction steps
of E1. Initially, E1 is empty. We start the process by supposing not 1 in E1. Thus, by application of the
rule 2← not 1 we deduce 2 and then ¬not 2 is inferred from the mutual exclusion clause (¬2∨¬not 2).
The construction of E1 goes on by adding not ¬2 to E1 and then we deduce 3. The mutual exclusion
(¬3 ∨ ¬not 3) prohibits the application of not 3. Then, we add not ¬3 to E1 from which we deduce ¬1.

If we are interested only on the gene literals i, then we obtain the restricted graph of E1 depicted in
Figure 3(c) representing the corresponding stable model M1. This model corresponds to one of the two
stable configurations of the corresponding transaction graph of Example 1. The extension E2 is build in
a similar way as E1. To get E2, one has to start the process by supposing of not ¬1 in E2.

From the biological point of view, the variables of the answer sets represent the state of each gene
of the regulatory network. For instance M1 = {¬1, 2, 3} ; expresses the fact that 2 and 3 are active and
1 is inactive. Similarly, M2 = {1, ¬2, ¬3} means that both 2 and 3 are inactive and 1 is active.

In the following, we will show that each interaction graph IG representing a negative circuit of n
nodes, has 2n extra-extensions of degree 1 inducing 2n extra-models that encode a stable cycle of size
2n in the corresponding graph transition.

Proposition 9. If the interaction graph IG is a negative circuit of size n then HC(PIG) has 2n extra-
extensions of degree 1 inducing 2n extra-models of size n − 1.

Proof. The proof is based on the fact that in a negative circuit, a gene acts negatively on itself through
the circuit. Indeed, if we give at the beginning the authorization to activate the gene i by supposing

327

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

not ¬i, then when we close the cycle we deduce that i is inactive (¬i is true), Conversely, if we initially
authorize to inhibit i by supposing not i, then we deduce that i is active (i is true) when we close the
cycle. We then obtain an inconsistency in both cases, because we deduce i and ¬i simultaneously. This
deduction means that we cannot have a complete extension in both cases.

Then, we obtain an incomplete extension as well as its mirror extension where there is neither the
literal not j nor the literal not ¬ j with j being the predecessor of i. Neither i nor ¬i is true in the two
obtained extensions. On the other hand, all the other elements different from i are linked in the two
extensions in question. It follows that the two extensions are, therefore, of degree 1. It is also trivial to
see that both extensions do not satisfy the discriminating condition. Indeed, in the obtained extension,
we have ¬not i without having i, and in its mirror extension, we have ¬not ¬i without having ¬i.

Therefore, we have two mirror extra-extensions of degree 1 inducing two extra-models of size n−1.
Each time we change the starting element i, we get two other mirror extra-extensions of degrees 1,
which induce two other extra-models of sizes n − 1. In total, there will therefore be 2n extra-extensions
of degree 1 inducing 2n extra-models of sizes n − 1. �

Example 7. Consider the extended logic program of Example 5 expressing the interaction graph of
Example 2 corresponding to a negative circuit of size 3 (Figure 2(a)):
PIG(f) = {2← not 1, ¬2← not ¬1, 3← not ¬2, ¬3← not 2, 1← not ¬3, ¬1← not 3}.
After translation, we get the following general logic program:
P′IG(f) = {2← not 1, 2′ ← not 1′, 3← not 2′, 3′ ← not 2, 1← not 3′, 1′ ← not 3}.
The logic encoding HC(P′IG(f)) has (E′i) six extra-extensions that correspond to six extra models (M′i):
E′1 = HC(P′IG(f)) ∪ {not 1, not 2′} ⇒ E′1 |= {not 1, 2, not 2′, 3} ⇒ M′1 = {2, 3}
E′2 = HC(P′IG(f)) ∪ {not 1, not 3} ⇒ E′2 |= {not 1, 2, not 3, 1′} ⇒ M′2 = {2, 1′}
E′3 = HC(P′IG(f)) ∪ {not 1′, not 3′} ⇒ E′3 |= {not 1′, 2′, not 3′, 1} ⇒ M′3 = {2′, 1}
E′4 = HC(P′IG(f)) ∪ {not 1′, not 2} ⇒ E′4 |= {not 1′, 3′, not 2, 3′} ⇒ M′4 = {2′, 3′}
E′5 = HC(P′IG(f)) ∪ {not 2′, not 3′} ⇒ E′5 |= {not 2′, 3, not 3′, 1} ⇒ M′5 = {3, 1}
E′6 = HC(P′IG(f)) ∪ {not 2, not 3} ⇒ E′6 |= {not 2, 3′, not 3, 1′} ⇒ M′6 = {3′, 1′}

Figure 4: (a) IG(g) the negative circuit, (b) construction of E′1 (c) construction of M′1 .

Figure 4(a) gives the negative circuit that we expressed as a logic program. Figure 4(b) shows the
construction of the extension E′1. It is constructed by adding to HC(P′IG(f)) both literals not 1, and
not 2′. We can see in Figure 4(b), that it is impossible to deduce 1′. Indeed, to obtain 1′, we should
use the rule (1′ ← not 3). But this is impossible since ¬not 3 results from the mutual exclusion
(¬3 ∨ ¬not 3). On the other hand, we can not get 1. As not 1 holds, then from the mutual exclusion
(¬1∨¬not 1) we get ¬1. Thus, we cannot have 1. We can remark that the extension E′1 is not complete
because it contains neither not 3 nor not 3′. The element 1 is free in E′1, since 1 < E′1 and ¬1 < E′1. It
results that, E′1 is an extension of degree 1. Figure 4(c) gives the restriction of E′1 to the corresponding
extra-model M′1.

328

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

4 The relation between the transition graph and and the logical
representation of its corresponding interaction graph

In this section, we study the relationship between the logical representation HC(PIG) of the interaction
graph IG and its corresponding transition graph TG. To do that, we will see that the vertices of the
transition graph TG corresponding to stable configurations or to stable cycles could represent in fact,
extensions / extra-extensions (answer sets or extra-models) of the logical encoding HC(PIG).

Given a Boolean network, having IG as its interaction graph, TG its corresponding transition graph,
and HC(PIG) the horn clausal representation of the logic program PIG, we will show for positive circuits
(Theorem 3) that there is an isomorphism between the stable configurations of TG and the answer sets
of HC(PIG). Moreover, we shall also prove (Theorem 4) that any stable cycle of the transition graph
corresponding to a negative circuit interaction graph of size n is encoded as a set of 2n extra models of
degree 1 of HC(PIG).

Proposition 10. Given a Boolean network represented by the interaction graph IG where TG is the
transition graph associated with IG and HC(PIG) the horn clausal representation of the logic program
PIG expressing IG. If s is a vertex (a configuration) of TG representing an extension / extra-extension E
of HC(PIG) of degree k, then s has exactly k successors.

Proof. If i is free in the extension / extra-extension E representing the configuration s, then either ¬i or
i is true in an extension / extra-extension corresponding to a state s′ accessible from s. By construction
of TG, s′ is the single successor of s that verifies this statement. This property is verified for each free
element i in E. Thus, if the degree of freedom of E is k, then there will be k accessible vertices from
s. �

Theorem 3. Given a Boolean network where IG is the interaction graph and HC(PIG) the horn clausal
representation of the logic program PIG associated with IG. Then the following assumptions hold:

1. If X = (x1, x2, . . . , xn) is an answer set of PIG induced by an extension of HC(PIG), then X =

(x1, x2, . . . , xn) is a stable configuration of the transition graph TG

2. If X = (x1, x2, . . . , xn) is a stable configuration of the transition graph TG, then X = (x1, x2, . . . , xn)
corresponds to an answer set of PIG induced by an extension of HC(PIG).

Proof. 1. Let E be the extension inducing the answer set X = (x1, x2, . . . , xn) and s = (x1, x2, . . . , xn)
the vertex representing E in TG. As E is an extension, then its degree of freedom is 0. According
to Proposition 10, it follows that the only accessible node from s is itself. Thus, s is a stable state
of TG.

2. Now if s = (x1, x2, . . . , xn) is a stable state of the associated transition graph TG, then no arcs
come out of s. The only vertex accessible from s is itself. It follows that for each element xi (resp.
¬xi) of s, either xi is true or ¬xi is true. Then, all the xi are linked in the extension E corresponding
to the configuration s. That is, the freedom degree of E is 0. It results from Proposition 7 that
s = (x1, x2, . . . , xn) forms an answer set of PIG.

�

Example 8. The right part of Figure 5 shows both extensions obtained for the logic program corre-
sponding to the positive circuit of Example 5. We can see that these extensions induce two answer sets
that encode both stable configurations of the transition graph (left part of Figure 5) drawn in bold font.

329

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

Figure 5: The stable configurations of TG expressed as stable models of HC(PIG).

Theorem 4. Given a Boolean network where the interaction graph IG is a negative circuit of size n and
PIG the logic program expressing IG. Then, the set of 2n extra-extensions of HC(PIG) correspond to a
stable cycle of the associated transition graph TG.

Proof. Proposition 9 guarantees the existence of 2n extra-extension (extra-models) of degree 1. We
have to consider here the fact that all the 2n extra-extensions are of degree 1. This implies that there is a
single transition from each extra-extension of degree 1 to another extra-extension of degree 1, producing
a stable cycle of 2n extra-extensions. This corresponds to a stable cycle of size 2n in TG, where each
extra-extension identifies a configuration in the cycle of TG. �

Example 9. The right part of Figure 5 shows the extra-extensions obtained for the logic program corre-
sponding to the negative circuit of Example 5. We can see that six extra-extensions of degree 1 inducing
six extra-models are found and each of them identifies a configuration of the stable cycle of the corre-
sponding transition graph given in bold font (Left part of Figure 5).

Figure 6: A stable cycle of TG seen as a set of 2n extra-extensions of HC(PIG).

5 Empirical Validation
To demonstrate the validity of our approach on Boolean network attractor discovery, we applied it on
some randomly generated circular networks. The circular networks of size n are generated by selecting
for a current node i ∈ {1, 2, . . . , n} independently and uniformly exactly one successor j ∈ {1, 2, . . . , i −
1, i + 1, . . . , n}. The label s of the corresponding arc (i, s, j) is generated by choosing randomly a sign
between positive and negative (s ∈ {+,−}). The process is repeated for node j and all the successor

330

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

nodes generated up to the last node, which must have as successor the starting node i making the graph
cyclical.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

20

40

60

Number of nodes

R
un

tim
e

(s
ec

)
The runtime obtained on positive circular graphs

0 10 20 30 40
0

20

40

60

Number of nodes

R
un

tim
e

(s
ec

)

The runtime obtained on negative circular graphs

Figure 7: The CPU times of the attractors of the positive and negative circuits

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

1

2

3

4

5

Number of nodes

N
um

be
ro

fa
ttr

ac
to

rs

The number of stable configurations (attractors) of the positive circuits

10 15 20 25 30 35 40
0

20

40

60

80

Number of nodes

Si
ze

of
at

tr
ac

to
rs

The sizes of the stable cycles of negative circuits

Figure 8: The number / size of attractors obtained on the randomly generated circular graphs

In this experiment, we applied the proposed approach to randomly generated Boolean networks up
to 7000 nodes for positive circular networks and up to 40 nodes for the negative circular ones. The
resulting runtimes to get all the attractors of each instance are shown in Figure 7. We can see that the
method is powerful; it computes the two attractors (stable configurations) of positive circuits having
7000 nodes in less than 60 seconds. For the negative circuits it calculates the stable cycles for networks
with a size up to 40 nodes in less than 60 seconds. We can also see in Figure 8 that the number of stable
configurations (attractors) for all the generated positive circuits is 2, while for the negative circuits, there
is only one stable cycle of size 2n for each graph instance. These experimental results correlate well
with biology and confirm the validity of the theoretical properties demonstrated in this article.

6 Conclusion
Boolean networks represent a widespread modeling technique for analyzing the dynamic behavior of
gene regulatory networks. By using Boolean networks, we can capture network attractors, which are
often useful for studying the biological function of a cell. We discussed in this paper the particular case
of circuits that plays an essential role in biological systems. We proved several properties that establish
a correspondence between the attractors of transition graphs and the stable models / extra-models of
the logic programs expressing the circular interaction graphs. In particular, the representation of stable
cycles of negative circuits by a set of extra-models shows the advantage of the extension offered by the
semantics used to those of stable models [5].

331

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

In addition to the theoretical results, we proposed an approach that computes efficiently all the
answer sets / extra-models representing the stable configurations or the stable cycles of the transition
graph of the considered Boolean network. The fact that the logical representation of a positive circuit
has two stable mirror models and that one of a negative circuit has a set of 2n extra-models gives a good
witness for the validity of the method since this corresponds to the known results in biology [17]. The
correlation of our results with those of biology has been demonstrated theoretically and experimentally.

As future work, we are looking to take into account other modes of updating like the parallel mode,
then generalize the study to the sequential blocks, which are deterministic periodical updates. On the
other hand, we are interested in characterizing non-stable cycles in Boolean networks.

References

[1] Belaı̈d Benhamou and Pierre Siegel. A new semantics for logic programs capturing and extending the stable
model semantics. Tools with Artificial Intelligence (ICTAI), pages 25–32, 2012.

[2] Hidde De Jong. Modeling and simulation of genetic regulatory systems: a literature review. Journal of
computational biology, 9(1):67–103, 2002.

[3] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer set programming. AI Magazine,
37:53–68, 2016.

[4] Martin Gebser, Benjamin Kaufmann, Andrá Neumann, and Torsten Schaub. Conflict-driven answer set solv-
ing. IJCAI, 7:386–392, 2007.

[5] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. ICLP/SLP,
50:1070–1080, 1988.

[6] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive databases. New
generation computing, 9:365–385, 1991.

[7] Katsumi Inoue. Logic programming for boolean networks. In Twenty-Second International Joint Conference
on Artificial Intelligence, 2011.

[8] François Jacob and Jacques Monod. Genetic regulatory mechanisms in the synthesis of proteins. Journal of
molecular biology, 3(3):318–356, 1961.

[9] Stuart A Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of
theoretical biology, 22(3):437–467, 1969.

[10] Stuart A Kauffman. The origins of order: Self-organization and selection in evolution. OUP USA, 1993.
[11] Tarek Khaled and Belaid Benhamou. Symmetry breaking in a new stable model search method. 22nd In-

ternational Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR-22), Kalpa
Publications in Computing, 9:58–74, 2018.

[12] Tarek Khaled and Belaid Benhamou. An asp-based approach for attractor enumeration in synchronous and
asynchronous boolean networks. Proceedings 35th International Conference on Logic Programming, ICLP
2019, Las Cruces, NM, USA, pages 295–301, 2019.

[13] Tarek Khaled, Belaı̈d Benhamou, and Pierre Siegel. A new method for computing stable models in logic
programming. Tools with Artificial Intelligence (ICTAI), pages 800–807, 2018.

[14] Hannes Klarner, Alexander Bockmayr, and Heike Siebert. Computing maximal and minimal trap spaces of
boolean networks. Natural Computing, 14(4):535–544, 2015.

[15] Fangzhen Lin and Yuting Zhao. Assat: Computing answer sets of a logic program by sat solvers. Artificial
Intelligence, pages 115–137, 2004.

[16] Victor W. Marek and Miros L. Truszczynski. Stable models and an alternative logic programming paradigm.
The Logic Programming Paradigm, pages 375–398, 1999.

[17] Elisabeth Remy, Brigitte Mossé, Claudine Chaouiya, and Denis Thieffry. A description of dynamical graphs
associated to elementary regulatory circuits. Bioinformatics, 19(suppl 2):ii172–ii178, 2003.

332

An ASP-based Approach for Boolean Networks Representation and Attractor Detection Tarek Khaled and Belaı̈d Benhamou

[18] Camilla Schwind and Pierre Siegel. A modal logic for hypothesis theory. Fundamenta Informaticae, 21:89–
101, 1994.

[19] Ilya Shmulevich, Edward R Dougherty, and Wei Zhang. From boolean to probabilistic boolean networks as
models of genetic regulatory networks. Proceedings of the IEEE, 90(11):1778–1792, 2002.

[20] Pierre Siegel, Andrei Doncescu, Vincent Risch, and Sylvain Sené. Towards a boolean dynamical system
representation in a monmonotonic modal logic. 2018.

[21] Patrik Simons, Ilkka Nimelä, and Timo Soininen. Extending and implementing the stable model semantic.
Artificial Intelligence, 138:181–234, 2002.

[22] Nam Tran and Chitta Baral. Hypothesizing about signaling networks. Journal of Applied Logic, 7:253–274,
2009.

[23] Ryan Williams, Carla P Gomes, and Bart Selman. Backdoors to typical case complexity. International joint
conference on artificial intelligence, 18:1173–1178, 2003.

333

	Introduction
	Preliminaries
	Boolean Networks
	Transition graphs
	Interaction graphs

	Answer Set Programming
	The new semantics for general programs
	How the semantics is applied for extended programs

	Representing interaction graphs as logic programs
	The relation between the transition graph and and the logical representation of its corresponding interaction graph
	Empirical Validation
	Conclusion

