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Abstract

A fundamental maneuver in autonomous space operations is known as rendezvous,
where a spacecraft navigates to and approaches another spacecraft. In this case study, we
present linear and nonlinear benchmark models of an active chaser spacecraft performing
rendezvous toward a passive, orbiting target. The system is modeled as a hybrid automaton,
where the chaser must adhere to different sets of constraints in each discrete mode. A
switched LQR controller is designed accordingly to meet this collection of physical and
geometric safety constraints, while maintaining liveness in navigating toward the target
spacecraft. We extend this benchmark problem to check for passive safety, which is collision
avoidance along a passive, propulsion-free trajectory that may be followed in the event of
system failures. We show that existing hybrid verification tools like SpaceEx, C2E2, and
our own implementation of a simulation-driven verification tool can robustly verify this
system with respect to the requirements, and a variety of relevant initial conditions.

1 Introduction

The National Research Council published a report on NASA’s roadmaps for 2011-2021, where
83 specific technologies were ranked with high-priority for enabling next-generation space
missions [2]. One such technology is relative guidance algorithms, or the autonomous control of
spacecraft to perform fundamental maneuvers on-orbit. The benchmark model of autonomous
rendezvous, proximity operations, and docking (ARPOD) presented in [14] captures the essence
of relative guidance problems in a generic, reusable scenario. This scenario and its components
are essential in applications such as on-orbit transportation of personnel [22], resupply for
personnel [19], assembly of space stations [24], and repair and refueling of spacecraft [10].

In particular, rendezvous refers to navigating a primary spacecraft towards a secondary
free-flying object (which we fix to be a satellite) and maneuvering within close-proximity of
the target without collision. This presents a challenging constrained, optimal control guidance
problem. An overview of general state-of-the-art solutions to this particular problem is given
in [20]. While such approaches have lend to some successes, recent examples suggest they are
not fully mature technologies nor guaranteed to behave safely. For example, NASA’s DART
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spacecraft was designed to rendezvous with the MUBLCOM satellite [18]. In 2005, approximately
11 hours into a 24-hour mission, DART’s propellant supply depleted due to excessive use of
thrusters, and it began a mission abort sequence. In the process it collided with MUBLCOM; it
met only 11 of 27 mission objectives, rendering the loss of a $110 million project. Several other
incidents in [23] highlight the consequences of failures in space applications and demonstrate
the need for more rigorous testing before deployment.

Although formal verification has played an important role in design and safety analysis of
spacecraft hardware and software (see, for example [11] and the references therein), they have
not been used for model-based design and system-level verification and validation.

In this paper, we present a suite of hybrid models for the rendezvous portion of the ARPOD
mission from [14] that can serve as benchmarks for verification tools and serve as building-
blocks for more complex missions. These models consist of either nonlinear orbital dynamics or
linearized dynamics using the Clohessy-Wiltshire-Hill (CWH) equations [1]; a switched linear
state-feedback controller; and mission goal of rendezvous either with or without a failure event.
The rendezvous mission is subdivided into two parts, such that there is a set of constraints on
the spacecraft’s motion when its position is within close proximity of the target position and a
relaxed subset of constraints that hold when the spacecraft is outside of this proximity range.
The controller exhibits switching behavior to handle this change of constraints during the course
of the rendezvous mission. In the event of a system failure, we propose the spacecraft change its
mission from rendezvous to passive abort. A passive abort involves shutting off the vehicle’s
thrusters when any anomalies are detected in the system, and the only requirement here is to
avoid collision with the target, which is also referred to as the passive safety property. A failure
event is captured by some subinterval of time in our bounded mission time horizon in which the
spacecraft will nondeterministically transition to the passive abort strategy.

We have successfully verified the requirements for most of these models using existing
hybrid verification tools SpaceEx [9] and C2E2 [4, 6], and our MatLab implementation of a
simulation-driven verification algorithm (SDVTool) for linear hybrid models applied to this
particular rendezvous problem. SpaceEx and C2E2 employ different algorithms for computing
reachability, and while both work with linear hybrid models, only C2E2’s approach works
with nonlinear models and was expected to verify all the models presented in this paper. We
found that C2E2 did not perform well for the subset of models involving the passive abort
sequence, and introduced SDVTool to improve C2E2’s capabilities for checking linear systems.
The reachability algorithm in SDVTool is presented in [5]. Overall, we believe that our results
and approaches establish feasibility of system-level verification of autonomous space operations,
and they provide a foundation for the analysis of more sophisticated maneuvers in the future.

2 Related work

There are few academic works on system-level verification of autonomous spacecraft. A survey
of general verification approaches and how they may apply to small satellite systems is presented
in [13]. Architecture and Analysis Design Language (AADL) and verification and validation
(V&V) over AADL models for satellite systems have been reported in [3]

An feasibility study for applying formal verification of autonomous satellite maneuvers is
presented in [16]. That approach relied on creating rectangular abstractions (dynamics of the
form ẋ ∈ [a, b]) of the satellites dynamics through hybridization and verification using PHAVer [8]
and SpaceEx [9]. The generated abstract models have simple dynamics but hundreds of locations,
and also, the analysis is necessarily conservative. In contrast, the approaches presented in this
paper work directly with the linear (nonlinear) hybrid dynamics.
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The ARPOD challenge [14] has been taken up by several researchers in proposing a variety
of control strategies. A two-stage optimal control strategy is developed in [7], where the
first part involves trajectory planning under a differentially-flat system and the second part
implements Model Predictive Control on a linearized model. A supervisor is introduced to
robustly coordinate a family of hybrid controllers in [17]. Safe reachsets (i.e. ReachAvoid sets)
are computed for the ARPOD mission in [12] and used to solve for minimum fuel and minimum
time trajectories.

3 Spacecraft Rendezvous Model

In this section, we present the detailed development of the hybrid models. First we present the
orbital dynamics of the spacecraft in Sections 3.1-3.2. Then in Sections 3.3-3.4 we present a
hybrid controller. Finally, we state the various mission constraints in Section 3.5.

3.1 Nonlinear relative motion dynamics

The dynamics of the two spacecraft in orbit—the target and the chaser—are derived from
Kepler’s laws. We use the simplest case for relative motion in space, where the two spacecraft
are restricted to the same orbital plane, resulting in two-dimensional, planar motion. The so
called Hill’s relative coordinate frame is used. As shown in Figure 2, Hill’s frame is centered on
the target spacecraft, with +î-direction pointing radially outward from the Earth, +k̂-direction
normal from the orbital plane, and +ĵ-direction completing a right-handed system. We further
assume that the target moves on a circular orbit, and thus, the ĵ-direction aligns with the
tangential velocity of the target.

The restriction on the target’s orbit implies that the target-centered frame rotates with
constant angular velocity. We will assume the target is in geostationary equatorial orbit (GEO),
so its angular velocity is n =

√
µ
r3 , where µ = 3.986 × 1014m3/s2 and r = 42164km. The

chaser’s position is represented by the vector ~ρ = x̂i + yĵ, and the acceleration provided by the
chaser’s thrusters is denoted ~u = Fxi + Fyj. The following equations are derived using Kepler’s
laws and constitute the nonlinear model of the spacecraft dynamics.

ẍ = n2x+ 2nẏ +
µ

r2
− µ

r3
c

(r + x) +
Fx
mc

,

ÿ = n2y − 2nẋ− µ

r3
c

y +
Fy
mc

,

(1)

where rc =
√

(r + x)2 + y2 is the distance between the chaser and Earth and mc = 500kg is the
mass of the chaser.

3.2 Linear dynamics

Linearization of these equations about the system’s equilibrium point at the origin results in the
Clohessy-Wiltshire-Hill (CWH) equations [1], which are commonly used to capture the relative
motion dynamics of two satellites within a reasonably close range. These equations are:

ẍ = 3n2x+ 2nẏ +
Fx
mc

,

ÿ = −2nẋ+
Fy
mc

.

(2)
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Let the state vector be denoted by ~x = [x, y, ẋ, ẏ]T . The state-space form of these linear
time-invariant (LTI) equations is:

~̇x = A~x+B~u, where,

A =


0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0

 , B =


0 0
0 0
1
mc

0

0 1
mc

 , ~u =

[
Fx
Fy

]
.

3.3 Hybrid system model

Varying ranges of the relative distance between the spacecraft give rise to different constraints
and requirements, and therefore, require separate controllers. We will present a two-stage hybrid
controller for achieving the rendezvous maneuver. Each discrete mode has an invariant which
specifies the conditions under which the system may operate in that mode, which we will first
describe in words.

Mode 1 : the chaser is attempting to rendezvous and its separation distance (ρ =
√
x2 + y2)

from the target is in the range 100-1000m.

Mode 2: the chaser is attempting to rendezvous and its separation distance is less than 100m.

Passive: the chaser is no longer attempting to rendezvous and is not using its thrusters,
regardless of its separation distance.

The state of the overall hybrid system is defined by the mode and the valuations of a set of
continuous variables: relative position x, y, relative velocity ẋ, ẏ, thrusts Fx, Fy, and a global
timer tmr . There are two timing parameters of the model t1 and t2 that specify the time interval
over which the chaser spacecraft may enter the Passive mode. When the system is in a particular
mode, the continuous variables ~x evolve according to the (linear (2) or nonlinear (1)) differential
equations of the previous section. The thrust inputs ~u are computed according the full-state
feedback controller designed in Section 3.4.

We refer to the time elapsed in the mission with the variable tmr. In dynamical systems,
the time parameter t is independent and not treated as a state variable, or the dependent term
~x. However, transitions introduce nondeterminism, even in the independent variables. The
transition to Passive is dependent on time, thus we explicitly model time by tmr.

A transition may be taken as long as the guard (i.e. label on the edges of Figure 1) is satisfied.
When the mode invariant aligns with a guard so that the transition must be taken as soon as it
is enabled, this is called an urgent transition. Such transitions may preserve determinism, in
that we may know the precise state of the system just before a transition. On the other hand,
the transitions to Passive are not urgent. Even if we know precisely the valuation of tmr before
a transition is taken, we can only know that tmr ∈ [t1, t2] right after a transition is taken.

3.4 Linear Quadratic Control

We present a full-state feedback controller, namely, a Linear Quadratic Regulator (LQR), to
drive the chaser towards the target’s position. LQR is a linear function of the state, of the form:
~u = Ki~x, where i indicates the discrete mode. Since we turn off thrusters in Passive mode,
Kpassive = 0.
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Mode1:

˙̄x = (A−BK1)x̄

˙tmr = 1

Inv:

ρ ≥ 100∩tmr ≤ t2

Mode2:

˙̄x = (A−BK2)x̄

˙tmr = 1

Inv:

ρ ≤ 100∩tmr ≤ t2

Passive:

˙̄x = Ax̄

˙tmr = 1

Inv:

tmr ≥ t1

x̄0

ρ ≤ 100

ρ ≥ 100

tmr ∈ [t1, t2]

tmr ∈ [t1, t2]

Figure 1: Hybrid model for spacecraft rendezvous, with linear flow equations shown. The
invariants in Mode 1 and Mode 2 are defined exclusively by the chaser’s position, as shown by
corresponding colors in Figure 3. Transitions between Mode 1 and Mode 2 are urgent, while
transitions to Passive occur nondeterministically within an interval of time.

Earth

Target

Chaserĵ

î

~ρ

Figure 2: Hill’s relative coordinate frame.
Chaser’s relative position vector is ~ρ = x̂i+yĵ.
(Direction +k̂ out of the page not shown.)

i

j

100m

~ρ

60◦

Figure 3: The invariants for Mode 1 and Mode
2 in Figure 1 are shown in corresponding
colors (blue and green). The LOS region
(yellow) overlaps with the invariant of Mode
2 and indicates the desired region of operation
whenever the chaser is in Mode 2. The dashed
lines show the octagon used to approximate
ρ = 100 using only affine functions of x, y.

In general, closed-loop feedback control is desirable because the system can measure and
adjust for errors, and ultimately guarantee liveness (i.e. eventually the target will be reached).
LQR is specifically chosen because it is constructed by minimizing a quadratic cost function,
which we can choose so as to roughly satisfy our safety constraints. LQR is only applicable to
linear systems, so we design the control for the linearized model in (2), but we will use the same
control with nonlinear dynamics (1) when applying verification tools.
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Each constant Ki ∈ R4×2 is obtained by solving the following optimization problem:

min
~u

∫ ∞
0

(~xTQi~x+ ~uTRi~u)dt,

subject to ~̇x = A~x+B~u,

where Qi and Ri are positive definite matrices.
Bryson’s method [15] is used to help determine an appropriate cost function. Begin with

Q and R as diagonal matrices, and choose their values so as to normalize each of the state
and input variables. In other words, choose the diagonal elements so that qii = 1

max(x2
i )

and

rii = 1
max(u2

i )
. Here, the denominators refer to the largest desired value of each variable,

which will be determined by the safety constraints and mode invariants. While the LQR gains
are obtained with our constraints in mind, the resulting controller does not guarantee these
constraints are never violated. This is why further verification is still required. This design
process is repeated for modes 1 and 2, and the result is two distinct LQR controllers for each of
these modes in our hybrid system.

Notice that the flow equations given in Figure 1 already account for the form of the LQR
controller in the context of the linear dynamics in (2). Similarly substituting the LQR solution
into the nonlinear system in (1) results in the following nonlinear flow equations:

ẍ =

(
3n2 − k11

mc

)
x− k12

mc
y − k13

mc
ẋ+

(
2n− k14

mc

)
ẏ,

ÿ = −k21

mc
x− k22

mc
y −

(
2n+

k23

mc

)
ẋ− k24

mc
ẏ.

(3)

3.5 Constraints and safety requirements

In this section, we enumerate the properties that define a safe and successful mission, and how
they are modeled for verification tools.

Thrust constraints During the rendezvous stages (Mode 1 and Mode 2), the thrusters cannot
provide more than 10N of force in any single direction, therefore, we have the constraints:

|Fx|, |Fy| ≤ 10.

LOS cone and proximity During close-range rendezvous Mode 2, the chaser must remain
within a line-of-sight (LOS) cone (see Figure 3), and its total velocity must remain under

5cm/s, so
√
ẋ2 + ẏ2 ≤ 5cm/s. The total velocity constraints cannot be exactly modeled

using linear constraints, and a polytopic approximation over ẋ, ẏ is used. This is done in
the same way as

√
x2 + y2 is approximated (see Figure 3).

Separation During the Passive mode, the chaser must avoid collision with the target, which is
theoretically a point mass at the origin. Even in a theoretical model, a small ball or box
should be used to bound this point to account for limitations in numerical precision. In
reality, the target satellite’s dimensions may range from the order of 1m to 100m, so the
size of this bounding box will vary depending on the situation. We use a box with a 0.1m
circumradius.
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4 Verification approaches

In this section, we briefly discuss our experience in using hybrid system verification tools.
SpaceEx [9], is a well-established reachability analysis tool for linear and affine hybrid systems. It
implements a support function-based reachability algorithm. The support function representation
of sets is amenable to effective computation of convex hulls, linear transforms, Minkowski sums,
etc.—operations that are necessary for safety verification.

C2E2 [4, 6] is a simulation-driven bounded verification tool for nonlinear hybrid models.
The core algorithm of C2E2 relies on computing reachset over-approximations from validated
numerical simulations and what are called discrepancy functions. A discrepancy function for
a model bounds the sensitivity of the trajectories of the hybrid system to changes in initial
states and inputs. Candidate discrepancy functions can be obtained using a global Lipschitz
constant or using a matrix norm for linear systems. However, typically these approaches give
discrepancy functions that blow-up exponentially with time, and therefore, are not useful for
verifying problems with long time horizons. The automatic on-the-fly approach implemented
in [6] uses bounds on the Jacobian matrix of the system to get tighter local discrepancy functions
and it has been used to verify several benchmark problems. Recently the tool has been extended
to handle nonlinear models with dynamics with exponential and trigonometric functions.

For a (possibly nonlinear) mode with ẋ = f(x(t)), the discrepancy computed by the algorithm
of [6] uses the Jacobian matrix J(x) of f(x) and the condition number of J(x0) evaluated at
certain points x0 in the state space. For ill-conditioned matrices, such as what we have in
the passive mode, (the A-matrix representation of (2)), the over-approximation error may still
blow-up. Ill-conditioned systems may not only arise from passive dynamics but also from
extremely large and small coefficients appearing together in J(x0).

In order to address this problem, we have created a MatLab implementation of C2E2’s verifi-
cation algorithm for linear models and then modified the reachability computation component.
SDVTool does not rely on a discrepancy function, but instead computes the reachable states
under a given linear mode directly. The particular algorithm implemented is the one presented
in [5]: For an n-dimensional system, n+ 1 simulations are performed. From these simulations,
special sets called generalized star sets, are generated to represent the exact reachsets. For our
purposes, a generalized star set is represented by a pair 〈x0, V 〉, where x0 ∈ Rn is the center
state and V = {v1, ..., vn} ⊆ Rn is a standard basis (not necessarily unit vectors), and the set
defined by 〈x0, V 〉 is

{x ∈ Rn | ∃α1, . . . , αn ∈ [−1, 1], x = x0 +
n∑
i=1

αivi}.

As reachsets are calculated for time steps, x0 and V are transformed. When the reachtube
from a given mode intersects the guards for a transition, the star sets are aggregated and
over-approximated with hyperrectangles. If R∗i =< x(ti), Vi > is the star set reachset obtained
at time ti, then the hyperrectangular reachset is:

Ri = {x | x ≤ x(ti) +

n∑
j=1

max(−vj , vj)

and x ≥ x(ti) +

n∑
j=1

min(−vj , vj)}.
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C2E2 and SDVTool currently accumulates all the reachable sets in Mode 1 and Mode 2 that
may transition to Passive, and uses their convex hull to begin reachset computations under the
Passive mode. It follows that if the time interval during which a transition may occur is large,
then the initial set of states under the Passive mode is large, making it very difficult to prove
safety. One solution is to allow partitioning and refinement of the initial passive mode set. Since
this is not currently implemented in C2E2 or SDVTool, we restrict our experiments to transition
interval lengths of 5 minutes or less. For example, checking if the system is safe for a transition
tmr ∈ [50, 200 min] could be achieved by running several experiments with small subintervals
that cover the original interval.

5 Verification results

The collection of hybrid automaton models for each of the tools are available from from this
link1. In this section, we will elaborate on how the hybrid model in Figure 1 with its linear (2)
and nonlinear (1) variants are actually modeled in the semantics of each of the software tools.

First, all the tools operate on a bounded set of initial states and bounded execution time.
Our choice of these parameters were motivated by the encompassing mission from [14], where
an upper bound on the total mission time is given and an initial state is given for a mode that
precedes Mode 1 in our setup. Since we are only performing a subset of the mission, we choose a
time horizon strictly shorter than that bound and one that aligns with average rendezvous times
outlined in [21]. Our time bound is 4 hours and the set of initial states is the hyperrectangle
around the point ~x0 = [−900m,−400m, 0m/s, 0m/s] with radius [25m, 25m, 0, 0]. This can be
interpreted as uncertainty in the chaser’s initial position but knowing it begins with zero initial
relative velocity.

Next, in both C2E2 and SpaceEx, unsafe properties are modeled and checked individually.
Furthermore each property must be described by a conjunction of affine inequalities. In
Section 3.5, we described safe regions of operation. Some of these properties are represented by
nonlinear inequalities (i.e. LOS region and total velocity) so we use polytopes to approximate
such subsets of the state space. Since each property is 2-dimensional in this benchmark, their
approximations are easily visualized. The LOS region (shown in Figure 3) is approximated by
the following:

(x ≥ −100) ∩ (y ≤ x tan (30◦)) ∩ (−y ≤ x tan (30◦)),

which describes a triangle circumscribing the true LOS region. On the other hand the safe
total velocity region is originally:

√
ẋ2 + ẏ2 ≤ 0.05, and is approximated using a conjunction of

affine inequalities that forms an octagon, similar to the dashed lines in Figure 3 approximating√
x2 + y2 ≤ 100. Since safe sets are described by a conjunction of affine inequalities, we see

that unsafe regions are described by a disjunction of affine inequalities. Then, each inequality
is independently modeled in the software tool input files. For example, the representation of
unsafe LOS regions spans three files/properties:

• LOS1: x < −100

• LOS2: y > x tan (30◦)

• LOS3: −y > x tan (30◦)

Notice that flow equations are modeled using differential equations. Observe that following
systems describe equivalent behaviors:

1https://tinyurl.com/verifysat
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1. ~̇x = A~x+B~u, ~u = −K~x

2. ~̇x = (A−BK)~x

However, only system 2 can be directly modeled in the syntax for hybrid model descriptions
in C2E2 and SpaceEx. If any transition guards, mode invariants, or unsafe properties depend
directly on ~u, these would be captured by affine inequalities −K~x < c. However, the syntax
of C2E2 is limited to 1- or 2-dimensional affine inequalities. Thus we revise system 1 to be:
~̇x = A~x + B~u, ~̇u = −K~̇x. This is equivalent to the original system 1 given the appropriate
initial conditions. In the tool’s syntax, this is a 6-dimensional state vector [x, y, ẋ, ẏ, Fx, Fy].
This 6-dimensional variant is required to verify thrust constraints in C2E2. While it is not
required in SpaceEx, the 6-dimensional model may still be used in SpaceEx to obtain reach sets
for the Fx, Fy variables.

The last parameter we have yet to define in the software tool models is the guard on
transitions to the Passive mode. We choose a small interval at [120, 125min], which ensures that
the chaser will have operated in both Mode 1 and Mode 2 before transitioning to Passive.

Figure 4 shows a sample of the reach sets we obtain from SDVTool, C2E2, and SpaceEx,
under the conditions discussed up to this point. Table 1 summarizes the runtimes taken to
obtain these results. The linear models with and without a failure event were all successfully
verified to be safe with respect to all properties presented. The nonlinear model without a failure
event (i.e. no transition to Passive) was successfully verified to be safe in C2E2 with respect
to rendezvous-related properties. In C2E2, both linear and nonlinear models that included
the Passive mode resulted in an unknown output (neither safe nor unsafe). As mentioned in
Section 4, C2E2’s reachability algorithm exhibits a state space blow-up for this particular mode,
thus reach sets will always intersect with unsafe regions even when no simulation trace can be
found to intersect with unsafe regions.

Note that C2E2 and SpaceEx re-executes its verification algorithm for each property, so the
runtime listed for a property, say LOS, is actually the average runtime to check each sub-property,
e.g. LOS1, LOS2, and LOS3. SDVTool is handcrafted to verify this particular rendezvous
problem (i.e. there is no specification for general models/properties), so it checks all properties
in one execution.

Tool Max
Thrust

LOS Max
Vel.

Collision All

SDVTool 5.5
SpaceEx 6.2 6.4 6.5 6.5
C2E2 85 20 17.8 N/V

Table 1: Time (seconds) taken to check each safety property across different tools. “N/V”
indicates that the property was not successfully checked.

We run an additional experiment in SDVTool to get a qualitative understanding of how
well the switched LQR controller works for the scenario of a rendezvous mission with a failure
event. Based on the encompassing ARPOD mission in [14], we expect our rendezvous mission
to begin at a separation distance around 1000m and at an angle in the third quadrant of
the relative coordinate frame. We maintain the same assumptions as before that the initial
velocities are zero. We partition this set of initial states Θ (see the colored arc in Figure 5)
into smaller sets θ1, ..., θM , for some M ∈ Z+, such that ∪iθi = Θ. For each initial set θi, we
repeat the verification algorithm N times. On the jth run, the Passive transition guard is set to
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(a) (b) (c)

(d) (e) (f)

Figure 4: Reachable positions for rendezvous without any transition to Passive as computed by:
(a) SDVTool (linear), (b) SpaceEx (linear), and (c) C2E2 (nonlinear). Reachsets computed by
SDVTool for: (d) velocity in Mode 2, (e) thrust, and (f) positions reached after a transition to
Passive during [120,125min].

[t1, t2] = [tj−1, tj ] and t0 = 0, tN = 4 hours. Figure 5 depicts the results of this experiment by
assigning a color to the largest value of tj for which the algorithm returns a safe result. For
example, if we look at the initial state [−900,−400, 0, 0] or a small neighborhood of this point,
the color is a deep red indicating that if we perform rendezvous starting from this initial state,
we can successfully rendezvous and abort the mission at any time before the 4 hour time bound.
If we look at a neighborhood around [−200,−900, 0, 0], the color is a light blue indicating that
we can only guarantee that the rendezvous can safely abort at any time before 100 minutes. If
a transition to Passive occurs after 100 minutes, this may result in a violation of the passive
safety property or a rendezvous property (e.g. max thrust) may be violated after 100 minutes.
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Figure 5: Initial positions (with zero initial velocities) of LinProx that have been verified to be
safe. They are safe for Passive transition times up to the time shown by the color map.

6 Conclusions

In this case study paper, we present a sequence of linear and nonlinear, nondeterministic
benchmark models of autonomous rendezvous between spacecraft with several physical and
geometric safety requirements. We designed an LQR controller and verified its safety across
the different models, a variety of initial conditions, parameter ranges, and using three different
hybrid system verification approaches. The models and requirements are made available online.

This case study, and in particular the dynamics of the Passive mode, has shed light on the
weakness of simulation-driven verification in handling ill-conditioned models.

The results provide a foundation for verifying more sophisticated maneuvers in future
autonomous space operations. For example, we proposed a state feedback controller, but it is
also possible to consider a situation where full state measurement is not possible and a simple
bang-bang controller could be used instead. However a bang-bang controller would result in
unstable behavior similar to the Passive mode in C2E2. The autonomous rendezvous problem
can easily be made more challenging and realistic, which then invokes innovation and application
of problems in observability, optimal and robust control, and the like. There is a concurrent need
to address algorithmic verifiability of these sophisticated, innovative control solutions. C2E2
is one example of the ongoing effort to cover a large, growing class of nonlinear models, but it
remains to be seen how we can apply rigorous safety-checking to common optimal, constrained
control schemes, such as Model Predictive Control (e.g. if optimization constraints are relaxed.)
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