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Abstract 

As digital workflows evolve around the curriculum life cycle in higher education 

institutions, advanced digital tools are needed to automate the processing of study 

regulations. In particular, the use of formal logic is beneficial for any type of validation 

in the accreditation process. Three key challenges are addressed in this paper: how to 

model study regulations, how to validate rules contained in modelled programmes, and 

how to package the contained logic of study rules in flexible communication between 

different AI services. This report on a case study demonstrates a solution that enables a 

continuous workflow from editing the rules to automated validation scenarios that 

support the administrative staff. The use of symbolic logic in conjunction with formal 

specification languages offers various forms of use cases within the curriculum life cycle. 
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1 Introduction 

In higher education, typical problems with study regulations can arise from a number of factors, 

including conflicting interpretations of rules, inconsistent enforcement of regulations, and lack of clear 

guidance on policy implementation. These problems can result in confusion among students, faculty, 

and administrators, and can negatively impact the overall educational experience. Another issue is the 

lack of standardisation across institutions, which can result in confusion for students who transfer 

between institutions or for those who are pursuing degrees from multiple institutions. In some cases, 

regulations may also be outdated or inconsistent with current best practices, leading to problems in their 

implementation and application. To address these issues, Higher Education Institutions (HEI) regularly 

review and update their study regulations.  

The approach of formalising study regulations in logic-based languages had been applied before 

(Habtemariam, 2006; Nguyen, 2012). Various problems had been addressed, in particular the solution 

of the combinatorial scheduling of timetable requirements (Banbara et al., 2013, Banbara et al., 2019). 

However, the models of the formalised study regulations always required a manual translation from the 

original legal document, often as a PDF, defining the study programme and the derived model.  

The use of SemaLogic (von der Heyde & Goebel, 2021) as a formal specification language provides 

an additional link between natural language and logic programs. Thus, the processes related to the 

description, validation, and interpretation of study regulations can be enhanced by utilising AI 

technology. This approach employs a logic-based method that merges natural language and symbolic 

rules, allowing the study regulations to be understood by both humans and machines. In order to 

enhance AI competency and empower subject representatives to design and use the approach, an offer 

of advanced training is being developed as part of the project. The overarching goals of the project are 

to increase the structural validity and consistency of study regulations through automated testing, 

improve the understanding of AI among university stakeholders, and enhance the quality of higher 

education by implementing AI technology in the organisation of studies. This is achieved through a 

generic microservice approach, ensuring that all components are robust, scalable, and easily transferable 

to other higher education institutions (von der Heyde et al., 2023). 

This paper focuses on the formalised modelling of inherently flexible rules which define a study 

program, their generic coding, and the validation in multiple stages. Motivated by a number of use 

cases, the communication protocol was standardised to cover the logic contained in the study 

regulations. We place significant emphasis on the formal modelling of study regulations and their 

validation at multiple levels. This paper aims to provide a comprehensive explanation of the research 

programme and accompanying applications associated with this approach. Section 2 will outline the 

level of modelling applied to the study programmes and additional constraints. Section 3 will introduce 

the specific levels of validation. Finally, the paper will summarise the overall approach to formally 

validate study regulations based on their formal specification language descriptions. 

2 Formal modelling of study regulations 

Formal specification languages are languages that are used to describe the behaviour and properties 

of systems in a precise and mathematical manner. These languages provide a systematic and 

unambiguous means of describing complex systems by simplifications and describing the problem on 

an abstract level, thus making it easier to understand, analyse, and verify the systems' correctness. 

Formal specification languages typically include a set of symbols, rules, and syntax used to specify the 

behaviour of systems, and often have a theoretical foundation in formal logic and mathematics. They 

are widely used in various domains, including software engineering, computer science, business 

contracts (He et al., 2018, Sharifi et al., 2020), and engineering (Gacek et al., 2015) to specify the 
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behaviour of specific systems in their domain. The use of formal specification languages enables the 

systematic and rigorous analysis of systems, reducing the risk of errors and improving the overall 

quality of the described systems. Soavi et al. (2022) compiled a systematic literature review on the 

application of specification languages to legal documents and, in particular, smart contracts. The 

translation from natural language to formal specification language was divided into four phases to 

structure the body of literature: (a) structural and semantic annotation based on an ontology; (b) 

identification of relationships for concepts identified in the previous step; (c) formalisation of terms into 

a domain model; and (d) generation of formal expressions. The translation process is not yet performed 

automatically by any of the reviewed publications for the generic case. 

Study regulations are written in natural languages, but still aim to be understandable and concise. 

As they are legal documents, they typically use a formal language style. However, they do not use 

formal specification languages. The utilisation of formal specification languages for study regulations 

facilitates the application of formal logic and mathematical constraints in order to assess their logical 

consistency, completeness, and accuracy (Habtemariam, 2006). Therefore, the level of abstraction 

typically used in study regulations as a set of common operators, rules or constraints builds a foundation 

for their validation as simplification. 

The logical operators contained in typical study regulations have been analysed in the past (von der 

Heyde & Goebel, 2020). Capturing this semantic structure as a nested or hierarchical tree of boolean 

operators connecting modules belonging to a specific programme is one option in modelling. Additional 

structural constraints are, e.g., differentiation between focus topics, temporal requirements or 

prerequisites. SemaLogic has been designed to be able to capture a broad variety of study regulations 

found in the initial analyses. Based on the formal rule statements, the number of alternative module 

combinations can be calculated (von der Heyde & Goebel, 2021).  

 

 
Figure 1: Example of the editing of technical language (left hand side) and the derived graphical 

representation of the study programme (right hand side). 
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Adding additional data attributes to modules allows for the capture of the expected student workload 

(e.g., as credit points), reference to required or allowed exam types, or similar data. In the case of credit 

points, simple mathematical operations may add to the list of constraints (e.g., a group of modules are 

required to sum to or exceed a specific number of credit points).  

The formal model of the Cognitive Systems master programme of the University of Potsdam was 

written using SemaLogic as technical language (see Figure 1). Further steps in the modelling will 

involve the rewriting of the rules in the formal specification language which is closer to the natural legal 

language which normal study regulations would apply. 

3 Validation of study regulations 

Validation of study regulations is an essential process in ensuring the quality of a study programme. 

This procedure involves evaluating the rules against a set of predefined criteria to determine their 

suitability for the intended purpose. The validation process is typically conducted by subject matter 

experts and involves a systematic review of the rules, including examining their logical consistency, 

completeness, and accuracy. The outcome of the validation process is documented, and any 

discrepancies or issues identified are resolved before the rules are published and applied. Typically, this 

procedure is performed during any formal accreditation of the study program. This process helps to 

minimise the risk of errors and ensures that the rule sets are consistent with the overall goals and 

objectives of the educational system.  

In order to introduce the targeted use cases within the validation domain, first the core principles 

and main use cases are summarised. To allow automatised support subsequently, two complementary 

approaches are employed: a low-level real-time validation checking, which is effective for a subset of 

constraints and types of inconsistencies, and a full combinatorial solving process using Answer Set 

Programming (ASP), which checks all conditions and includes additional constraints. These approaches 

are linked and the latter incorporates additional data at the ASP solver level, which is detailed in a 

follow-up subsection. This section concludes with a brief overview of future development. 

3.1 General use cases 

Using SemaLogic as a formal specification language, validation mainly addresses constellations that 

can be described by numbers and facts. The following list illustrates the breadth of questions that can 

be answered automatically to support less error-prone study regulations and accreditable programmes: 

● Do the regulations comply with the basic regulations of the University of Potsdam? 

● Is the programme manageable? Can the study requirements be met in the given time? Where 

are the bottlenecks in the sequence that pose a risk to students? 

● Could the programme be studied with the current course offerings? If changes were made, 

could it be studied with equal or higher success rates? Where are systematic bottlenecks? 

● What alternatives in the course sequence (i.e., what degrees of freedom) do students have to 

meet the European Credit Transfer and Accumulation System (ECTS) requirements? How 

many choices do they have to make? 

● How do different study programmes relate to each other in the above respects? Are there 

critical inconsistencies with the examination regulations? To what extent are the identified 

characteristics compatible with the strategic direction of the university? 

● What teaching capacity is required for which student numbers? What distribution of teaching 

capacity do the defined elective options and frequencies of modules entail? 

● How robust is the study program? How many faculty can be absent for what period of time 

without jeopardising course offerings? Where are sabbaticals systematically impeded? 
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While some of these steps are already performed efficiently, others can benefit from more advanced 

support. As an example, we present here the automatic generation of a table that compares modules 

from a formally modelled study regulation with the university's existing course offerings. 

The table displayed in Figure 2 is used for quality assurance by visualising gaps in the range of 

courses with regard to the individual modules, overlaps, and inappropriate multiple use of courses. 

Previously, such mappings had to be created manually, while our approach allows for automated 

generation of such visualisations in the course of editing new study regulations. 

Other activities in the validation process are omitted here for the sake of a concise presentation. 

Regardless of this simple example, the symbolic models of study regulations already have a high value 

in study operations, because the formalisation generates a deeper understanding of processes and 

dependencies, reveals subjective scope for interpretation, and thus reduces potential for 

misunderstandings. 

 

 
Figure 2: Mapping of study regulations to course offerings are generated to support validation 
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3.2 Real-time low-level validation 

Validating study regulations that comprise a substantial number of alternatives rapidly results in a 

large number of module combinations that comply with the rules, referred to as a solution. These 

alternatives may relate to optional modules, areas of specialisation, or the sequence in which modules 

are taken. As the number of rules that introduce alternatives increases, the complexity of detecting rule 

violations also increases. Specialised root causes for the lack of a solution in study regulations have 

been identified, which can be checked with a quadratic effort in relation to the number of rules or 

symbols used [O(n²)]. The effort to check all combinations of a set of symbolic values typically grows 

exponentially, making it efficient to check a subset of typical violations prior to using a full factorial 

approach. 

The semantic representation selected in SemaLogic is optimised for the efficient evaluation of a 

number of conditions. The language features were intentionally constrained to serve the purpose of an 

effective evaluation. Simultaneously, users are provided with the capability to explicitly incorporate 

variations into the rules. This is achieved by capturing the range of permitted values using intervals. 

This approach is also used to specify the number of alternatives in a selection, thereby defining the 

minimum and maximum required count of the local solution that satisfies the rules. Many logical 

constraints are limited to check satisfiability only for the upper and lower bound, thus avoiding the 

exponential effort.  

Detection of the following logical rule violations was implemented at this stage: 

● Loop: recognises recursive definitions of terms as well as prerequisites or temporal order. 

● Completeness: detects if symbols are left undefined when they are needed. 

● Compartmentalisation: detects if the rule set is split into multiple partitions, i.e., the defined 

symbols have no logical reference between them. 

● Ranges: detects if instances of variables do not match the defined range of values. 

● Conflicting AND and OR conditions: detects whether the requirements of the AND statements 

conflict with the constraints of the concurrent OR statements, leaving the solution set empty. 

● Empty dynamic groups: detects whether a dynamic group defined by an interval of symbolic 

names has no members. 

 

 
Figure 3: Integration of feedback into the Obsidian editor via interactive SVG graphics. An 

example for user feedback via the bubble help function is embedded into the SVG. 

 

The user feedback is provided within the various data formats offered via the OpenAPI interface, as 

depicted in Figure 3: Within the JSON format provided for further evaluation through ASP, the errors 

are embedded into a JSON sub-structure. The SemaLogic semantic tree output provides a plaintext list 

of errors before the actual content (left). Finally, the automatically generated graphical representation 

using SVG (right) offers additional advice by means of the bubble help feature of HTML links. They 
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are embedded into the structure causing the inconsistency of the rule set. Thus, the user is directly aware 

of the source of the violation. 

Additional conditions have been identified on the theoretical level, but not yet discovered in real 

study regulations. As the body of modelled regulations grows, additional checks will be implemented 

to match the need. 

In sum, the low-level validation can be applied as a microservice into the online editing of study 

regulations and constantly helps to evaluate the defined rules in real-time.  

3.3 Validation using ASP 

ASP is a declarative programming paradigm for solving combinatorial search problems (Schaub & 

Woltran, 2018; Lifschitz, 2008). In ASP, the problem to be solved is first specified in a declarative 

fashion. This specification contains rules and constraints which define what a valid solution to the 

problem is. This is further explained below. 

The resulting output from a SemaLogic model is utilised in the ASP solving process. As can be 

observed from Figure 4 below, each study regulation model in SemaLogic is convertible into a JSON 

object. This JSON object contains both data and rules found in the study regulation text. In the ASP 

Service, these rules and data are represented as data and are collectively taken as the ASP instance. This 

instance is fed into an ASP encoding, which contains the rules and constraints in a study regulation text, 

and then fed to the ASP solver to find one or many study paths (if they exist). A valid study path (or 

solution) is simply a set of modules which satisfy all the constraints. This separation of ASP instance 

and encoding effectively avoids rule generation for ASP, hence making our solving process easy to 

scale and maintain.  

 

 
Figure 4: Generic workflow in processing study regulations towards any of the use cases.  

 

The output of SemaLogic is checked for consistency. This checking process is preceded by a 

generation step, where combinations of the modules in a study regulation are created. This step does 

not involve checking the validity or studyability of each combination; the rules of the study regulation 

are not considered here. One could imagine the combinatorial blowup which this step will create: a 

study regulation with 10 modules will have 2¹⁰ = 1024 combinations. 

The checking step now applies all the rules to each element in the combination. Those that satisfy 

the rules remain while the others are excluded. If one or many solutions remain after the checking step 

then the rules are satisfiable. If no solution is produced then the rules are unsatisfiable. This ‘generate 

(or guess) and check’ methodology is commonly seen in ASP programs (Schaub & Woltran, 2018; 

Falkner et al., 2018).  

The following features are currently implemented: 

1. Fact format generator: the JSON output from SemaLogic is not fed into ASP as-is; rather, it 

goes through some preprocessing where it is converted into predefined ASP facts format. This 

feature serves as a kind of middleware between SemaLogic and the ASP encoding. This 

generator leverages the generic structure of the SemaLogic JSON output which features 

Automatic and Interactive Validation of Study Regulations... M. von der Heyde et al.

326



modules, module groups, module properties, group aggregate functions and terms as it closely 

captures the information in the study regulation text. 

2. ECTS range checker: modules are usually in groups with each group having properties unique 

to them. One such property is the ECTS. The ECTS of a module group has the maximum and 

sometimes minimum number of credit points required for that group. For compulsory module 

groups, the minimum and maximum ECTS is the same value, and for elective module groups 

the maximum ECTS is higher. With ASP we ensure this vital constraint is satisfied for all 

module groups present. 

3. Module group cardinality checker: this feature ensures that the total number of modules chosen 

within a module group is between the minimum and maximum number of modules of the 

module group. A module group of 5 modules could require a minimum of 2 and a maximum 

of 3 modules to be selected in order to satisfy the cardinality constraint. 

Part of our vision is to have all of these processes happen automated, ideally in real-time, i.e., as a 

study regulation for a programme is being crafted. 

3.4 Transmission of structured logic information 

The combination of real-time feedback of SemaLogic during the editing process and the additional 

validation results of ASP also depends on the communication between the two AI units. Only if the 

semantically coded knowledge is consistently interpreted will the user be able to equally benefit. Since 

the study regulation should be limited as little as possible, the coding between SemaLogic and ASP 

needs to be highly flexible. At the same time, the coding has to comply with existing standards. This 

section will demonstrate how flexible semantic structures, which arise during the writing process, can 

be transferred via constant interface definitions, such as a JSON construct defined by an OpenAPI 2.0 

interface (Goebel & von der Heyde, 2023). 

The goal is to use formalised study regulations in the microservice architecture at various places 

beyond the validation, e.g., using it as input to student information systems. It is essential that the 

generally formulated rules can be transferred without human intervention while retaining the extracted 

logic. The main challenge is to keep the interfaces constant while allowing maximal flexibility in the 

definition process. Hence, the JSON interface was divided into three generic sections of information: 

1. Attributes: as symbols and their properties as attributed values  

2. Groups: to flexibly name the segmentation of all symbols 

3. Terms: to cover the logical relation between symbols as constraints 

The first information concerns the “attribute” definitions. Symbols are defined in SemaLogic simply 

as anything which is not a specific grammatical token. Symbols represent modules, for example, 

whereas their attribute “ECTS” may represent the student workload as credit points. For each symbol, 

all occurring attributes of these symbols are transferred as a key-value pair. The specific naming of 

symbols and attributes are known at the time of usage, but are not part of the interface definition. For 

easier handling of further processing systems such as ASP, the data type is explicitly stored in addition 

to the attributed value. 

The second information coded in the interface concerns the “group” definitions. A group definition 

represents an assignment of a symbol to a group of symbols or further groups. In this JSON fragment, 

all relevant individual modules or other groups can be assigned to a group symbol such as "mandatory 

modules". During the JSON export, SemaLogic resolves semantically defined dynamic groups into their 

individual elements.  

In the third section, “terms” are coded as the essential logical relationships of the semantic objects. 

In analogy to the other two sections, we need to be able to map mathematical functions and logical 

constraints without adaptation of the interface. Each service can interpret specific logical or 

mathematical operations of the coded study regulations.  
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To accommodate this construct and the requirement for extensibility, the “terms” were defined as 

the combination of a designating symbol, a term type, and the associated parameters. The symbol is 

used to link to other semantic objects as defined in the other two sections. Thus, a term type of the 

"AND" operator can define "mandatory modules" for a group of otherwise defined symbols. The 

definition of further parameters would not be necessary in this case, since all symbols used by the AND 

condition were already defined in the group section. Other logical constraints require additional 

parameters. For example, an OR condition may be limited by a minimum and a maximum of required 

group members.  

Even though different parameters are to be transferred for each term type, the definition of the 

individual parameters is again implemented as an array of a key-value transfer structure, as already 

defined in the first section. The parameter names (=key) represent unambiguous function parameters 

specifically adapted to the respective term type, which are to be interpreted by the services. New 

functions can thus be embedded in the data interface without changing the underlying JSON structure, 

and without this having to be made known to all other services, since the services only process those 

term types that are known to the respective service. This flexible coding with a constant interface 

enables a loose coupling between all services. The overall communication is implemented via the 

general UseCaseController as described in the generic architecture (von der Heyde et al., 2023). 

3.5 Outlook for future development 

Further development will focus on the realisation of the different use cases mentioned in Section 

3.1. As the generic communication structure exists, additional data exported or derived from the 

university's student information system can be added to the validation process. 

Additional constellations of constraints will cover the recommendation system. So far, the rules for 

a finite set of solutions have been specified for each study regulation. The individual study path of 

students may differ, even if the set of modules they have passed remains identical. Thus, during the 

course of study, students and student advisors need recommendations on the next steps for a specific 

student. SemaLogic is able to encode operators such as prerequisites, temporal constraints and 

recommendations. All three operators possibly influence the recommended order in which individual 

modules or groups of modules are completed.  

ASP will capture the temporal features of a regulation and be used to generate, via a rating system, 

recommendations of all possible solutions, by prioritising those matching the additional and potentially 

weighted constraints and user-specified preferences. Also we will model and deduce the consequences 

of the following concepts: modules already passed by students, specialisations within a study program, 

temporal features in a regulation, module dependency and recommendation, study path 

recommendation based on student preferences (e.g., career path tailored modules, maximum number of 

ECTS per semester), and the effect of the absence or presence of one or more modules in a student 

programme in a particular semester or year. 

4 Conclusions 

The validation of new study programs or changes to existing programs usually requires considerable 

effort. The accreditation processes in higher education institutions are mainly a combination of non-

automated evaluation and documentation processes. Access to automated processing in this area but 

also all other areas of the Higher Education Reference Model (HERM) as discussed in (von der Heyde 

et al., 2023) require clear semantics and data modelling. In order to provide advanced digital tools, the 

study regulations, which form the core of the defined curriculum, need to be formalised and made 

accessible to algorithms. 
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As formal specification languages provide a systematic and unambiguous means of describing 

complex systems, we have applied this principle to the modelling of study regulations. This makes it 

possible to understand, analyse and verify the correctness of the regulations. SemaLogic, as a 

specialised form of a formal specification language, includes a set of operators and a flexible syntax for 

specifying the semantic cascading of logically nested structures. To communicate the automatically 

extracted and evaluated logical content of the study regulation at different levels in the validation 

process, a generic OpenAPI-based JSON definition was chosen. ASP, a combinatorial problem-solving 

paradigm, was ultimately used in the study regulation validation process.  

First use cases have been implemented. For example, the quality management process (as required 

by the accreditation) at the University of Potsdam regularly monitors the mapping of modules defined 

by the study regulations to course offerings in each semester. Further use cases have been defined and 

will be addressed in the near future. Also, the feasibility of the approach will be further analysed on the 

basis of a growing number of study regulations that provide a representative picture of the existing 

diversity of Bachelor and Master programmes.  
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