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Abstract

Unification modulo convergent term rewrite systems is an important research area with
many applications. In their seminal paper Lynch and Morawska gave three conditions on
rewrite systems that guarantee that unifiability can be checked in polynomial time (P). We
show that these conditions are tight, in the sense that relaxing any one of them will “upset
the applecart,” giving rise to unification problems that are not in P (unless P = NP), and
in doing so address an open problem posed by Lynch and Morawska. We also investigate a
related decision problem: we show the undecidability of subterm-collapse for the restricted
term rewriting systems that we are considering.

Keywords: Equational unification, Term rewriting, Polynomial-time complexity, NP-completeness, Un-
decidability.

1 Introduction
Unification modulo an equational theory E (equational unification or E-unification) is an unde-
cidable problem in general. Even in cases where it is decidable, it is often of high complexity. In
their seminal paper “Basic Syntactic Mutation” [7] Christopher Lynch and Barbara Morawska
present syntactic criteria on equational axioms E that guarantee a polynomial time algorithm
for the corresponding E-unification problem. As far as we know these are the only purely
syntactic criteria that ensure a polynomial-time algorithm for unifiability. Our goal initially
was to extend the Lynch-Morawska result for convergent term rewriting systems by relaxing
their constraints, while still maintaining the polynomial time algorithm guarantee. However,
we observed that their constraints were tight in the sense that relaxing any one of them would
give rise to unification problems that are not in P (unless P = NP). We provide proofs that
removing any of their constraints will lead to unification problems that are not in P.

We also investigate one of the computational issues raised by the Lynch-Morawska paper,
namely, checking whether a convergent term rewriting system is subterm-collapsing — a term
rewriting system is subterm-collapsing if and only if there is a term that is congruent to a
proper subterm of itself. We show the undecidability of subterm collapse even for convergent
term rewriting systems that satisfy the Lynch-Morawska conditions [7]. (For general convergent
systems, this result was shown by Bürkert, Herold and Schmidt-Schauß [4].)

2 Notation and Preliminaries
We assume the reader is familiar with the usual notions and concepts in term rewriting sys-
tems [2] and equational unification [3]. We consider rewrite systems over ranked signatures,
usually denoted Σ, and a possibly infinite set of variables, usually denoted X . The set of all
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terms over Σ and X is denoted as T (Σ,X ). An equation is an ordered pair of terms (s, t), usu-
ally written as s ≈ t. Here s is the left-hand side and t is the right-hand side of the equation [2].
A rewrite rule is an equation s ≈ t where V ar(t) ⊆ V ar(s), usually written as s → t. A term
rewriting system is a set of rewrite rules.

A set of equations E is subterm-collapsing1 if and only if there are terms t and u such that
t is a proper subterm of u and E ` t ≈ u (or t =E u) [4]. A set of equations E is variable-
preserving2 if and only if for every equation t ≈ u in E, Var(t) = Var(u) [9]. A term rewriting
system is convergent if and only if it is confluent and terminating [2].

Given a set of equations E, the set of ground instances of E is denoted by Gr(E). We
assume a reduction order ≺ on E which is total on ground terms. We extend this order to
equations as (s ≈ t) ≺ (u ≈ v) iff {s, t} ≺mul {u, v}, where ≺mul is the multiset order induced
by ≺. An equation e is redundant in E if and only if every ground instance σ(e) of e is a
consequence of equations in Gr(E) which are smaller than σ(e) modulo ≺ [7].

2.1 Paramodulation
Lynch and Morawska define an extension to the critical pair rule called paramodulation. Since
our focus is only on convergent term rewriting systems, this definition can be modified to use
rewrite rules as

u[s′]p ≈ v s→ t

σ(u[t]p) ≈ σ(v)

where σ = mgu(s =? s′) and p ∈ FPos(u). A set of equations E is saturated if all inferences
among equations in E are redundant.

2.2 Right-Hand-Side Critical Pairs
Lynch and Morawska also define a right-hand-side critical pair. Again, we modify the definition
to use rewrite rules as

s→ t u→ v

σ(s) ≈ σ(u)

where σ = mgu(v =? t) and σ(s) 6= σ(u). For an equational theory E, we define RHS (E) as
follows [7]:

RHS (E) = E ∪ { e | e is the conclusion of a Right-Hand-Side Critical Pair
inference of two members of E }

2.3 Quasi-determinism
A set of equations E is quasi-deterministic if and only if

(1) No equation in E has a variable as its left-hand side or right-hand side,
(2) No equation in E is root-stable—i.e., no equation has the same root symbol on its left-

and right-hand side, and
(3) E has no root pair repetitions—i.e., no two equations in E have the same pair of root

symbols on their sides.

1Non-subterm-collapsing theories are called simple theories in [4]
2Variable-preserving theories are also called non-erasing or regular theories [2].
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A theory E is deterministic if and only if it is quasi-deterministic and non-subterm-collapsing.

Lemma 2.1. Suppose R is a variable-preserving convergent rewrite system and R is quasi-
deterministic. Then RHS (R) is not quasi-deterministic if and only if RHS (R) has a root pair
repetition.

Proof. If RHS (R) has a root pair repetition, then clearly RHS (R) is not quasi-deterministic by
definition. We will prove the ‘only if’ case by contradiction.

Suppose RHS (R) is not quasi-deterministic and has no root pair repetition. Since R itself
is quasi-deterministic, there must be equations created in RHS (R) that cause the non-quasi-
determinism. Therefore there must be rules l1 → r1 and l2 → r2 in R such that θ(l1) ≈ θ(l2) is
in RHS (R). Since R is variable-preserving, it must be that (l1 → r1) and (l2 → r2) are distinct
rules, for otherwise we would have θ(l1) = θ(l2) and the generated rule would be discarded.

Since, by assumption, RHS (R) has no root pair repetition, either one of l1 or l2 is a variable,
or θ(l1) ≈ θ(l2) is root-stable. The first is not possible because rewrite rules cannot have a
variable as their left-hand side. In the second case, rules l1 → r1 and l2 → r2 would cause a
root pair repetition in R, which is a contradiction.

2.4 Monotone 1-in-3-SAT

All of the NP-completeness proofs in this paper are shown by reductions from the monotone
1-in-3-SAT problem [2], which is known to be NP-complete [6]. The problem is defined as
follows:

Instance: A CNF formula F = C1 ∧ · · · ∧Cn, where each clause is of the form Ci = pi ∨ qi ∨ ri
and pi, qi, and ri are propositional variables.

Question: Is there a satisfying assignment to the propositional variables of F that sets exactly
one propositional variable of each clause to true and the other two to false?

3 Lynch-Morawska Conditions

Given a confluent and terminating term rewriting system R, there are three conditions that
must hold to maintain a polynomial time algorithm guarantee:

(1) R is non-subterm-collapsing,
(2) R is saturated by paramodulation, and
(3) RHS (R) is quasi-deterministic.

In this section we will show that if any one of these conditions is relaxed there is no longer
a polynomial time guarantee. Therefore the conditions given in the Lynch-Morawska paper are
tight.

3.1 R is Subterm-Collapsing

Consider the following single-rule ground term rewriting system R1, where 0, 1, and c are
constants.

f(0, f(0, f(1, c)))→ c
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The system R1 is saturated by paramodulation and RHS (R1) is quasi-deterministic. However,
it is subterm-collapsing. The unification problem can be shown to be NP-hard by a reduction
from monotone 1-in-3-SAT.

For each clause Ci = pi ∨ qi ∨ ri we form the following equation EQi, where Zi is a variable
that varies with each clause.

f(Vpi
, f(Vqi , f(Vri , Zi))) =?

R1
Zi

The unification problem S is the set of all these equations. Every unifier of this equation
replaces exactly one of Vpi , Vqi , or Vri by 1 and the others by 0. In fact,

σ1 = {Vpi
7→ 0, Vqi 7→ 0, Vri 7→ 1, Zi 7→ c}

σ2 = {Vpi
7→ 1, Vqi 7→ 0, Vri 7→ 0, Zi 7→ f(1, c)}

σ3 = {Vpi
7→ 0, Vqi 7→ 1, Vri 7→ 0, Zi 7→ f(0, f(1, c))}

are the only normalized unifiers for the above equation. Clearly then S is unifiable iff the
1-in-3-SAT instance has a solution.

In [7], Lynch and Morawska posed, as an open problem, whether the requirement that R
be non-subterm-collapsing can be removed; in other words, can the polynomial-time result
be extended to systems which are saturated by paramodulation and quasi-deterministic but
possibly subterm-collapsing? The rewrite system R1 answers this problem negatively.

3.2 R is not Saturated by Paramodulation
Consider the following rewrite system R2, where 0 and 1 are constants.

f1(s(x))→ f2(x) f1(0)→ g(0, 0, 1)

f2(s(x))→ f3(x) f2(0)→ g(0, 1, 0)

f3(0)→ g(1, 0, 0)

The system R2 is deterministic (i.e., quasi-deterministic and non-subterm-collapsing), but not
saturated by paramodulation. There are no right-hand-side critical pairs, so RHS (R2) = R2.
The unification problem is NP-hard by a reduction from monotone 1-in-3-SAT. We only present
the key idea here.

For each propositional variable p we form a respective term variable Vp. For each clause
Ci = pi ∨ qi ∨ ri we form the following equation EQi.

f1(Xi) =?
R2

g(Vpi , Vqi , Vri)

It is not hard to see that the only unifiers of EQi are:

σ1 = {Vpi
7→ 0, Vqi 7→ 0, Vri 7→ 1, Xi 7→ 0}

σ2 = {Vpi
7→ 0, Vqi 7→ 1, Vri 7→ 0, Xi 7→ s(0)}

σ3 = {Vpi
7→ 1, Vqi 7→ 0, Vri 7→ 0, Xi 7→ s(s(0))}

In the case where R is not saturated by paramodulation, there is even a rewrite system whose
unification problem is not decidable. Consider the following single-rule rewriting system R′2,
where B and ∗ are binary function symbols.

B(x, y) ∗B(u, v)→ B(x ∗ u, y ∗ v)

The system R′2 is also deterministic and not saturated by paramodulation. Again, there are
no right-hand-side critical pairs, so RHS (R′2) = R′2. The unification problem modulo R′2 is
undecidable [1].
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3.3 RHS (R) is not Quasi-deterministic

By Lemma 2.1, there are only two ways RHS (R) can be non-quasi-deterministic: either R itself
is not quasi-deterministic, or RHS (R) contains a root pair repetition. Furthermore, the only
way that R can be non-quasi-deterministic (other than a root pair repetition) is if it contains a
root-stable equation. This is because a rewrite rule cannot have a variable as its left-hand side,
and a rule with a variable as its right-hand side would make the system subterm-collapsing.

R has a Root-stable Equation

The following system R3 is non-subterm-collapsing and saturated by paramodulation. However
R3 is not quasi-deterministic because it contains root-stable equations.

f(g(0, 0, 1), f(g(0, 1, 0), c))→ f(g(1, 0, 0), f(g(1, 0, 0), c))

where c, 0, and 1 are constants. Unifiability modulo R3 can also be shown to be NP-hard by a
reduction from monotone 1-in-3-SAT. Again, we only present the key idea here.

For each propositional variable p we form a respective term variable Vp. For each clause
Ci = pi ∨ qi ∨ ri we form the following equation EQi, where Xi, Yi, and Zi are variables that
vary with each clause.

f(Xi, f(g(Vpi
, Vqi , Vri), Yi)) =?

R3
f(g(1, 0, 0), f(g(1, 0, 0), Zi))

To unify this equation, we can either unify syntactically, or we can apply the rewrite rule to
the left-hand side at either occurrence of f . The following is a complete set of unifiers of EQi:

σ1 = {Vpi
7→ 1, Vqi 7→ 0, Vri 7→ 0, Xi 7→ g(1, 0, 0), Yi 7→ Zi}

σ2 = {Vpi
7→ 0, Vqi 7→ 1, Vri 7→ 0, Xi 7→ g(0, 0, 1), Yi 7→ c, Zi 7→ c}

σ3 = {Vpi
7→ 0, Vqi 7→ 0, Vri 7→ 1, Xi 7→ g(1, 0, 0), Yi 7→ f(g(0, 1, 0), c),

Zi 7→ f(g(1, 0, 0), c)}

Note that every unifier replaces exactly one of Vpi
, Vqi , or Vri by 1 and the others by 0.

RHS (R) has a Root Pair Repetition

The following system R4 is non-subterm-collapsing and saturated by paramodulation. However
RHS (R4) is not quasi-deterministic because it has a root pair repetition.

f(0, 0, 1)→ c1 g(0, 0, 1)→ c1

f(0, 1, 0)→ c2 g(0, 1, 0)→ c2

f(1, 0, 0)→ c3 g(1, 0, 0)→ c3

where c1, c2, c3, 0, and 1 are constants. Note that R4 is deterministic. Unifiability modulo R4

can also be shown to be NP-hard by a reduction from monotone 1-in-3-SAT. Again, we only
present the key idea here.

For each propositional variable p we form a respective term variable Vp. For each clause
Ci = pi ∨ qi ∨ ri we form the following equation EQi.

f(Vpi , Vqi , Vri) =?
R4

g(Vpi , Vqi , Vri)
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The only unifiers of EQi are:

σ1 = {Vpi
7→ 0, Vqi 7→ 0, Vri 7→ 1}

σ2 = {Vpi
7→ 0, Vqi 7→ 1, Vri 7→ 0}

σ3 = {Vpi
7→ 1, Vqi 7→ 0, Vri 7→ 0}

4 Undecidability of Subterm-Collapse

For general convergent systems, this result was shown by Bürkert, Herold and Schmidt-
Schauß [4]. We show that the property of subterm-collapsing is undecidable even when the
convergent system R satisfies the other Lynch-Morawska conditions, namely saturation by
paramodulation and quasi-determinism of RHS (R).

The proof is by reduction from the halting problem for reversible deterministic 2-counter
Minsky machines, which is undecidable since reversible deterministic 2-counter Minsky machines
are Turing-universal [8]. Such a machine M has two counters C1 and C2 and is described by a
quadruple (Q, δ, q0, qL), where Q = {q0, . . . , qL} is the set of states, q0 is the initial state, qL is
the final state, and δ is the move relation. The relation δ is represented by quadruples of the
form

[qi, j, s, qk] or [qi, j, d, qk]

where qi, qk ∈ Q, j = 1 or 2, s ∈ {Z,P}, and d ∈ {−, 0,+}. The first form represents checking
if counter Cj is zero (Z) or positive (P ) and if so moving to state qk. The second form represents
decrementing (−), incrementing (+), or doing nothing to (0) the counter Cj and then moving
to state qk.

We assume, without loss of generality, that δ does not contain any quadruples with q0 as
the destination. We can assume this because a machine with such a move relation can be
transformed into a machineM ′ = (Q]{ q′0 }, δ′, q′0, qL) where δ′ = δ]{ [ q′0, 1, 0, q0 ] }. This new
machine is clearly computationally equivalent to M .

We represent the configuration of such machine with a triple (qi, C1, C2), where qi is the
current state of the machine, and C1 and C2 are the states (values) of the counters. The
machine is assumed to be deterministic and reversible, which means that any configuration has
at most one predecessor. By Definition 2.3 of [8], a machine M is deterministic and reversible
if and only if, for each pair of quadruples [ qi1 , j1, x1, qi′1 ] and [ qi2 , j2, x2, qi′2 ] in δ,

(i1 = i2 or i′1 = i′2) ⇒ (j1 = j2 and {x1, x2} = {Z,P})

Thus each state has at most two predecessors and two successors, but only if the state is entered
and left (respectively) by checking the state of a single counter.

Given such a machine M and configurations (q0, k, p) and (qL, k
′, p′), we construct a term

rewriting system RM such that RM is saturated by paramodulation, and RHS (RM ) is quasi-
deterministic. We then show that RM is subterm-collapsing if and only if the machine M ,
starting in configuration (q0, k, p), will halt with (qL, k

′, p′) as its final configuration.
Our system is over the signature Σ =

⋃L
i=0{ qi, fi, f ′i } ∪ { 0, e, e′, c, s, f, g, g′ } where 0, e, e′,

and q0, . . . , qL are constants, c has arity 4, every other symbol has arity 1.
We can encode a natural number n as a term sn(0), where s represents the successor function

and 0 represents the natural number 0. Each state qi will encode itself as a constant. We use
e and e′ to represent the ‘empty’ state, which means the machine has either not started or has
already halted.
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We can then encode a configuration (qi, k, p) as a term c(qi, s
k(0), sp(0), sn(0)), where n is

the number of steps the machine has taken. The symbol c acts only as a constructor. We use
the f and g symbols, with various subscripts and primes, to ensure termination and saturation
by paramodulation of the resulting rewrite system.

To start, initialize RM to the following rewrite system:

f(c(e, sk(0), sp(0), 0))→ c(q0, s
k(0), sp(0), 0)

fL(c(qL, s
k′

(0), sp
′
(0), z))→ g(c(e′, 0, 0, z))

g′(g(c(e′, 0, 0, s(z))))→ c(e′, 0, 0, z)

g′(g(c(e′, 0, 0, 0)))→ e

The first rule encodes initializing the machine, moving from an empty state e to the initial
state q0 iff the configuration matches the given starting configuration. The second rule termi-
nates the machine iff the configuration matches the given final configuration and moves to an
empty state e′. The third rule checks that the fourth argument in the c-term encodes a valid
natural number. The last rule takes a correctly terminated machine and gives the empty state,
which could cause a subterm-collapse.

Next we encode the transition rules. For each quadruple in δ, extend RM using one of the
following transformations:

(a1) [ qi, 1, P, qj ] : RM := RM ∪ { fi(c(qi, s(x), y, z))→ c(qj , s(x), y, s(z)) }
(a2) [ qi, 2, P, qj ] : RM := RM ∪ { fi(c(qi, x, s(y), z))→ c(qj , x, s(y), s(z)) }

(b1) [ qi, 1, Z, qj ] : RM := RM ∪ { f ′i(c(qi, 0, y, z))→ c(qj , 0, y, s(z)) }
(b2) [ qi, 2, Z, qj ] : RM := RM ∪ { f ′i(c(qi, x, 0, z))→ c(qj , x, 0, s(z)) }

(c1) [ qi, 1,+, qj ] : RM := RM ∪ { fi(c(qi, x, y, z))→ c(qj , s(x), y, s(z)) }
(c2) [ qi, 2,+, qj ] : RM := RM ∪ { fi(c(qi, x, y, z))→ c(qj , x, s(y), s(z)) }

(d1) [ qi, 1, 0, qj ] : RM := RM ∪ { fi(c(qi, x, y, z))→ c(qj , x, y, s(z)) }
(d2) [ qi, 2, 0, qj ] : RM := RM ∪ { fi(c(qi, x, y, z))→ c(qj , x, y, s(z)) }

(e1) [ qi, 1,−, qj ] : RM := RM ∪ { fi(c(qi, s(x), y, z))→ c(qj , x, y, s(z)) }
(e2) [ qi, 2,−, qj ] : RM := RM ∪ { fi(c(qi, x, s(y), z))→ c(qj , x, y, s(z)) }

Lemma 4.1. Given a reversible deterministic 2-counter Minsky machine M , the system RM

has no RHS overlaps.

Proof. Suppose there is an RHS overlap between two rules in RM . The only way for this to
happen is for the rules’ right hand sides to both be c-terms and to contain the same state qi.
Because M is a reversible deterministic machine, and because we assume there is no quadruple
with q0 as its destination, the only way for that to happen is for one c-term to have been created
by either transformation (a1) or (a2) (i.e., the quadruple in δ contained a P ) and the other
by the corresponding (b1) or (b2) (i.e., a Z). However, in that case, there can be no overlap,
because there will be a function clash between s and 0. Thus there are no RHS overlaps.

Lemma 4.2. Given a reversible deterministic 2-counter Minsky machine M , the system RM

is saturated by paramodulation and quasi-deterministic.
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Proof. That RM is saturated by paramodulation follows from the fact that none of the root
symbols of the left hand sides of rules in RM occur at a position in the left- or right-hand side
of any other rule. Therefore, there are no possible overlaps and RM is saturated trivially.

Recall that for the system RM to be quasi-deterministic, the following conditions must hold:

(1) RM has no root pair repetitions
(2) If (s→ t) ∈ RM , then neither t nor s is a variable
(3) If (s→ t) ∈ RM , then root(s) 6= root(t)

For each quadruple in δ, only one of the above transformations will be used to extend RM

(i.e., only one rule will be added). The only way two rules could have the same left-hand root
symbol is for them to contain the same state qi, and that is only possible if one was created by
either transformation (a1) or (a2) (i.e., the quadruple in δ contained a P ) and the other by the
corresponding (b1) or (b2) (i.e., a Z). In that case, however, one would have fi as its left-hand
root symbol, and the other would have f ′i . Thus condition 1 is met.

Conditions 2 and 3 are readily apparent from the rules in RM .

Lemma 4.3. Given a reversible deterministic 2-counter Minsky machine M , the system RM

is convergent.

Proof. To prove that RM is terminating, consider the measure function

φ : T (Σ,X )→ N× N

such that φ(t) = (n1, n2), where n1 is the number of occurrences of f , fi, and f ′i symbols for
all i, and n2 is the number of occurrences of g and g′ symbols. Note that every rule except

fL(c(qL, s
k′

(0), sp
′
(0), z))→ g(c(e′, 0, 0, z))

removes at least one of these symbols and does not add any of the others. For this remaining
rule, the first component decreases even though the second component increases. Since the
rules in RM are linear and variable-preserving, if t1 →RM

t2, then φ(t1) >lex φ(t2), where >lex

is the lexicographic order induced by > on N× N. Therefore RM is terminating.
We will show the confluence of RM by showing that RM has no critical pairs. As shown

in Lemma 4.2, no two rules added by transformations (a1)–(e2) have the same root symbol on
their left-hand sides. No rule’s left-hand side’s root symbol could occur at a non-root position
of another rule’s left-hand side. So the only possible overlap would be the third and fourth
initial rules, but note that their left-hand sides are not unifiable due to a function clash of 0
and s(z). Thus RM has no critical pairs. So RM is convergent.

Lemma 4.4. Given a reversible deterministic 2-counter Minsky machine M , configurations
(q0, k, p) and (qL, k

′, p′), and rewrite system RM constructed as above, RM is subterm-collapsing
if and only if the machine M , starting in configuration (q0, k, p), will halt with (qL, k

′, p′) as its
final configuration.

Proof of ‘if ’. Suppose the machineM , starting in the given initial configuration, does halt with
the given final configuration after n steps. Since M is deterministic, there is a single sequence
of transitions the machine can take. Let S = 〈τ1, . . . , τn〉 be that sequence of transitions. For
each τi = [qj , κ, d, qj′ ], we define the symbol f∗i as

f∗i =

{
f ′j if d = Z

fj otherwise
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In other words, f∗i is an alias for either f ′j or fj depending on how M left state qj .
Now we can construct a term t = fL((f∗n ◦ · · · ◦ f∗1 )(f(c(e, sk(0), sp(0), 0)))), where ◦ is

function composition, such that t →+
RM

g(c(e′, 0, 0, sn(0))). This should be apparent from the
definition of RM . After the first rule initializes the machine and removes the f , each rewrite
will remove the innermost f∗i and move to the next configuration. Finally the second rule will
remove the outermost fL and move to the empty state.

Finally we can create a term t′ = (g′ ◦ g)n(g′(t)) such that t′ →+
RM

e. This is because
each application of the third rule will remove the innermost (g′ ◦ g) and an s from the step
counter, until the counter becomes 0. At that point, the fourth rule will rewrite the entire
term to e. Note that e is a proper subterm of t, which is itself a subterm of t′, so RM is
subterm-collapsing.

Proof of ‘only if ’. Conversely, suppose RM is subterm-collapsing. Since all rewrite rules in RM

are variable-preserving, and each rule added by transformations (a1)–(e2) increases the step
counter in the c-term, each application of a rule creates a c-term which has never occurred
before. Therefore, the only way for a subterm-collapse to occur is for a term to rewrite to e by
the fourth rule.

Let t be a term with e as a proper subterm such that t→+
RM

e. The only way to rewrite t
is by the first rule. This means there is a position p in t such that t|p = f(c(e, sk(0), sp(0), 0)).
Therefore, there is a term t′ such that t→RM

t′ and t′|p = c(q0, s
k(0), sp(0), 0).

At this point, the only way to rewrite t′ is to use the rules added by transformations (a1)–
(e2). Therefore, there must be a sequence S = 〈i1, . . . , in〉, 0 ≤ ij < L, and a position p′ in t,
p′ < p, such that t|p′ = t′|p′ = (f∗in ◦ · · · ◦ f

∗
i1

)(t|p), where each f∗j is either fj or f ′j . Therefore,
there is a term t′′ such that t→RM

t′ →+
RM

t′′ and t′′|p′ = c(qL, s
k′

(0), sp
′
(0), sn(0)). It should

be clear at this point, due to the way the rules of RM are constructed, that if the machine M
is started in configuration (q0, k, p), it would move through the states indexed by the sequence
S, finally halting in configuration (qL, k

′, p′).

Theorem 4.5. It is undecidable, given a rewrite system R which is convergent, saturated by
paramodulation, and for which RHS (R) is quasi-deterministic, whether RHS (R) is subterm-
collapsing.

Proof. As shown in Lemma 4.4, the halting problem for reversible deterministic 2-counter Min-
sky machines can be reduced to checking for subterm-collapse in a rewrite system RM . Since
RM has no RHS overlaps (Lemma 4.1), RHS (RM ) = RM . By Lemma 4.2, RM is saturated
by paramodulation and quasi-deterministic, and by Lemma 4.3, RM is convergent. Therefore,
since the halting problem for reversible deterministic 2-counter Minsky machines is undecidable,
so is checking for subterm-collapse in such a rewrite system.

5 Conclusion and Future Work

In this paper, we provesd that relaxing any of the Lynch-Morawska conditions can give rise to
unification problems that are in NP (or are not even decidable!). In doing so, we answered an
open problem posed in the Lynch-Morawska paper [7]. We also extended previous work [4] on
undecidability of subterm-collapse to the (very) restricted term rewriting systems considered
in this paper. So while the Basic Syntactic Mutation algorithm guarantees a polynomial time
unification algorithm for term rewriting systems that fit its conditions, determining whether a
system has these properties cannot be automated.
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Our future work involves extending the unification algorithm given in [7] to solve the asym-
metric unification problem for theories which satisfy the Lynch-Morawska conditions. This type
of unification problem has only recently been studied and has applications in cryptographic pro-
tocol analysis [5].
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A Forward Closure
In an earlier version of the paper, we formulated the Lynch-Morawska conditions in terms of
the concept of forward closure. The forward closure of a convergent term rewriting system R is
defined in terms of the following operation on rules in R: Let ρ1 = (l1 → r1) and ρ2 = (l2 → r2)
be two rules in R and let p ∈ FPos(r1). Then

ρ1  p ρ2 = σ(l1 → r1[r2]p)

where σ = mgu(r1|p =? l2).
Given rewrite systems R1, R2, and R3 we define FOV(R1, R2) (forward overlap) and

N (R1, R2, R3) (non-redundant) as

FOV(R1, R2) = { ρ1  p ρ2 | ρ1 = (l1 → r1) ∈ R1, ρ2 ∈ R2, and p ∈ FPos(r1) }
N (R1, R2, R3) = { ρ | ρ ∈ FOV(R1, R2) and ρ is not redundant in R3 }

We now simultaneously define NRk(R) (new rules) and FC k(R) (forward closure) for all k ≥ 0.

NR0(R) = R NRk+1(R) = N (NRk(R), R,FC k(R))

FC 0(R) = R FC k+1(R) = FC k(R) ∪ N (NRk(R), R,FC k(R))

Finally,

FC (R) =

∞⋃
i=1

FC i(R)

Note that FC j(R) ⊆ FC j+1(R) for all j ≥ 0. A set of rewrite rules R is forward-closed if
and only if FC (R) = R.

However it turns out that:

Lemma A.1. It is not the case that every convergent, forward-closed term rewriting system is
saturated by paramodulation.

Proof. Consider the following term rewriting system R:

f(g(x, x))→ h(x, x)

g(s(x), s(y))→ h(s(x), s(y))

f(h(x, x))→ h(x, x)

The only nontrivial critical pair is between the first and second rules. This pair is given as
follows:

〈f(h(s(u), s(v))), h(s(u), s(v))〉

The equation formed by this pair, f(h(s(u), s(v))) ≈ h(s(u), s(v)), is not redundant, since
h(s(u), s(v)) is in normal form and the only way to join the terms is by the third rule. The
instance f(h(s(u), s(v))) → h(s(u), s(v)) is equal to the equation, and thus not lower in the
ordering.
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