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Abstract

This paper is a contribution to the presentation of fractal sets in terms of final coal-
gebras. The first result on this topic was Freyd’s Theorem: the unit interval [0, 1] is the
final coalgebra of a functor X 7→ X ⊕ X on the category of bipointed sets. Leinster [L]
offers a sweeping generalization of this result. He is able to represent many of what would
be intuitively called self-similar spaces using (a) bimodules (also called profunctors or dis-
tributors), (b) an examination of non-degeneracy conditions on functors of various sorts;
(c) a construction of final coalgebras for the types of functors of interest using a notion of
resolution. In addition to the characterization of fractals sets as sets, his seminal paper
also characterizes them as topological spaces.

Our major contribution is to suggest that in many cases of interest, point (c) above on
resolutions is not needed in the construction of final coalgebras. Instead, one may obtain
a number of spaces of interest as the Cauchy completion of an initial algebra, and this
initial algebra is the set of points in a colimit of an ω-sequence of finite metric spaces. This
generalizes Hutchinson’s characterization of fractal attractors in [H] as closures of the orbits
of the critical points. In addition to simplifying the overall machinery, it also presents a
metric space which is “computationally related” to the overall fractal. For example, when
applied to Freyd’s construction, our method yields the metric space of dyadic rational
numbers in [0, 1].

Our second contribution is not completed at this time, but it is a set of results on metric space

characterizations of final coalgebras. This point was raised as an open issue in Hasuo, Jacobs, and

Niqui [HJN], and our interest in quotient metrics comes from [HJN]. So in terms of (a)–(c) above, our

work develops (a) and (b) in metric settings while dropping (c).

1 Introduction

As our abstract above indicates, this paper is largely a kind of “marginal note” to Leinster’s
paper on self-similar spaces obtained as final coalgebras of a certain sort. Our 4-page TACL
abstract cannot even hope to present all of Leinster’s definitions and central results, and so we
must refer the reader to [L] for all of the background. In fact, we are going to take the unusual
step of not even presenting all of our own definitions and results, since a reader unfamiliar would
not be able to follow a brief presentation, and a reader who has studied [L] and/or [HJN] would
likely see our general formulations. In addition to the “marginal note” on using completions
of initial algebras, we are interested in metric-space versions of non-degeneracy conditions and
recognition theorems from [L]. Our contributions here involve borrowings from metric geometry
(see [BH]). And so our remarks in this abstract are mainly hints as well.

Now that we have said mentioned that this abstract is not a decent presentation of our
results, let alone of Leinster [L], we should say what we are presenting. We are going to give a
a concrete example of how our constructions work, aimed mainly at the uninitiated reader. At
times we shall of course mention connections to other papers, especially Leinster [L].
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Figure 1: The Sierpiński gasket S ⊆ R2. The vertices are top = (1/2,
√

3/2), left = (0, 0), and
right = (1, 0).

2 The Sierpiński Gasket

Consider the maps σa, σb, σc : R2 → R2 given by

σa(x, y) = (x/2, y/2) + (1/4,
√

3/4)
σb(x, y) = (x/2, y/2)
σc(x, y) = (x/2, y/2) + (1/2, 0)

These maps σi extend to subsets of R2 by taking images. The Sierpiński gasket is the unique
non-empty compact subset S ⊆ R2 such that

S = σa(S) ∪ σb(S) ∪ σc(S). (1)

S is shown in Figure 1.
Let M = {a, b, c}. We use the letter m as a variable over M in the sequel. Let M∗ be the

set of finite words from M . We define triangles trw for w ∈M∗ by recursion:

trε = the triangle with vertices top = (1/2,
√

3/2), left = (0, 0), and right = (1, 0)
trmw = σm(trw)

Let
Rn =

⋃
{trw : w is a word of length n}

Also, for an infinite sequence α = α0α1 · · ·αn · · · ∈Mω, let

pα = the unique point in
⋂
n

trα0α1···αn

That is,
⋂
n trα0α1···αn

is an intersection of a family of non-empty compact sets, so it is a
singleton.

Proposition 2.1 (A very special case of Hutchinson [H]). S has the following characterizations:

S =
⋂
nRn = {pα : α ∈Mω} = the closure of

⋃
w∈M∗{x : x is a vertex of tw}.
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Remark Different sequences in Mω might well be associated with the same point via the op-
eration p. For example, let α = baccc · · · , and let β = bcaaa · · · . Then pα = pβ = (3/8,

√
3/8).

Remark Proposition 2.1 gives different ways to think about S. Writing S = {pα : α ∈ Mω}
connects S with resolutions as in Leinster [L]. The final way is closest to what we do in this
paper.

2.1 Tripointed Sets

Definition A tripointed set is a set X together with distinguished elements top, left, and right.
X is non-degenerate if the distinguished elements are distinct. We let Tri be the category of
non-degenerate tripointed sets, taking as morphisms the functions respecting the distinguished
points. The initial object I of Tri is {top, left, right}.

The functor X 7→M ×X on Set is defined as usual.

The functor X 7→M ⊗X on Tri We define ∼ on M ×X to be the relation

{((a, left), (b, top)), ((a, right), (c, top)), ((b, right), (c, left))}.

We take M ⊗X to be the quotient of M ×X by the smallest equivalence relation including ∼.
We write m⊗ x instead of the equivalence class [(m,x)]. So we have equalities

a⊗ left = b⊗ top a⊗ right = c⊗ top b⊗ right = c⊗ left

We call these points the connection points of M ⊗X.
Returning to our tripointed set M ⊗X, we now see that this set is a tripointed space with

topM⊗X = a ⊗ top, leftM⊗Xb ⊗ left, and rightM⊗X = c ⊗ right. If X is a ND tripointed set, so is
M ⊗X. The operation X 7→M ⊗X extends to a functor Tri→ Tri. If f : X → Y is a morphism
of tripointed sets, then M ⊗ f preserves the connection points.

The reader familiar with [L] will recall that everything we have done so far is contained in
Example 10.10. In particular the requirement that top, left, and right be distinct is a special case
of non-degeneracy.

2.2 Tripointed Metric Spaces

The functor X 7→ M ×X on MS MS is the category of metric spaces. (We do not assume
that all distances are bounded by 1.) The morphisms in MS are the non-expanding maps of
metric spaces. Then X 7→ M ×X extends to an endofunctor on MS in the following way. We
take

d((m,x), (n, y)) =

{
1
2d(x, y) if m = n
1 if m 6= n

If f : X → Y is a morphism in MS, then so is M ×f : M ×X →M ×Y . It is easy to show that
if X is complete, then M ×X is also complete. X 7→M ×X is contracting : for f, g : X → Y ,
d(M × f,M × g) ≤ 1

2d(f, g).
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The functor X 7→ M ⊗X on TriMS An object of TriMS is a metric space with three distin-
guished points top, left, and right which are required to be of pairwise distance 1.

Example 2.2. The initial object I of TriMS is the same set I = {top, left, right} with pairwise
distances 1. Another example is R2 with the usual metric, taking top = (

√
3/2, 1), left = (0, 0),

and right = (1, 0).

We turn X 7→ M ⊗X to an endofunctor on TriMS by taking the set M ⊗X and using the
quotient metric via the equivalence relation ∼.

Lemma 2.3. For all x, y ∈ X, distances in M ⊗X are calculated as follows:

d(a⊗ x, a⊗ y) = 1
2d(x, y)

d(a⊗ x, b⊗ y) = min

(
1
2 (d(a, left) + d(top, y)), 12 (d(x, right) + 1 + d(left, y))

)
and similarly for the other distance calculations.

Lemma 2.3 implies that M ⊗X is non-degenerate whenever X is.
There is a quotient natural transformation q : M ×X →M ⊗X.

2.3 Isometric Embeddings and the Initial Chain

A TriMS morphism η : X → Y is an isometric embedding if it preserves all distances.

Proposition 2.4. Concerning isometric embeddings:

1. The unique map η : I →M ⊗ I is an isometric embedding, where I is the initial object of
TriMS.

2. If η : X → Y is an isometric embedding, so is M ⊗ η : M ⊗X →M ⊗ Y .

As a result, we have a chain of isometric embeddings

I
η // M ⊗ I

M⊗η // M ⊗M ⊗ I
M⊗M⊗η // · · · (2)

In this situation, the colimit exists and is preserved by the functor M ⊗ −. We write G for
the colimit space. By Adámek’s Theorem [A], G carries the structure of an initial algebra
η : M ⊗G→ G. In particular, η is invertible.

We let TriCMS be the tripointed metric spaces which are complete: every Cauchy sequence
has a limit. Every metric space is isometrically embedded in its Cauchy completion, and so we
have a Cauchy completion functor C : TriMS→ TriCMS.

Proposition 2.5. The TriMS-endofunctors X → C(M ⊗X) and X →M ⊗C(X) are naturally
isomorphic.

Proof. We check that for all tripointed metric spaces X, C(M ⊗X) = M ⊗ C(X). Consider

M ⊗ C(X)
f // C(M ⊗X)

g // M ⊗ C(X)

given by
f(m⊗ (x0, x1, . . . , xn)) = (m⊗ x0,m⊗ x1, . . . , )
g((mi ⊗ xi)i) = m∗ ⊗ (xj1 , xj2 , . . . , )
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In the definition of g, for each sequence of points in M ⊗X, some m ∈M must occur infinitely
many times as the first coordinate mi, since M is finite. Let m∗ be “first” in some pre-chosen
order on M . Let (xji)i be the subsequence of (xi)i such that the corresponding first coordinates
are all m∗.

One checks that f and g are inverses (modulo equivalence of Cauchy sequences), that they
are non-distance expanding (hence they are isometries), that they preserve the distinguished
points, and that they are the components of natural transformations. All of these verifications
are elementary.

We have seen the initial algebra (G, η : M ⊗ G → G) of X → M ⊗ X on TriMS. We have
also seen the Cauchy completion functor C. Let S = C(G). Since C is a functor, we have an
isomorphism Cη : M ⊗ S → S. Our central result implies that (Cη)−1 : S → M ⊗ S is a final
coalgebra for X →M ⊗X on Tri.

Theorem 2.6. The final coalgebra of the functor M ⊗X on tripointed sets is the completion
of the initial algebra. Moreover, the Sierpiński gasket is bi-Lipschitz homeomorphic to this final
coalgebra.

These results are new. The main content of the paper is a general theory of why this is
so, building on, and sometimes varying, notions from Leinster [L]. For example, A pointed
combinatorial specification is a triple (A,M, pt) if (A,M) is a combinatorial specification, pt
is an object of A, and if (1) homA(pt, pt) = {idpt}; (2) M(pt, pt) = 1; and (3) For a 6= pt,
M(a, pt) = 0. These requirements and the Yoneda lemma imply that Hom(pt, a) : A → Set is
an initial non-degenerate functor, and this is how we start the chain (2) of isometric embeddings.
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