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Abstract

The goal of this paper is to study the complexity of the set of admissible rules of the
implication-negation fragment of intuitionistic logic IPC. Surprisingly perhaps, although
this set strictly contains the set of derivable rules (the fragment is not structurally com-
plete), it is also PSPACE-complete. This differs from the situation in the full logic IPC
where the admissible rules form a co-NEXP-complete set.

1 Introduction

Following Lorenzen [12], a rule is said to be admissible for a logic (understood as a finitary
structural consequence relation) if it can be added to a proof system for the logic without
producing any new theorems. While the admissible rules of classical propositional logic CPC
are also derivable – that is, CPC is structurally complete – this is not the case for non-classical
(modal, many-valued, substructural, intermediate) logics in general (see, e.g., [16, 14, 2]). In
particular, the study of admissible rules was stimulated by the discovery of admissible but
underivable rules of intuitionistic propositional logic IPC such as the independence of premises
rule:

¬p→ (q ∨ r) / (¬p→ q) ∨ (¬p→ r).

The decidability of the set of admissible rules of IPC, posed as an open problem by Friedman
in [4], was answered positively by Rybakov, who demonstrated also that this set has no fi-
nite basis (understood as a set of admissible rules that added to IPC produces all admissible
rules) [16]. Nevertheless, following a conjecture by de Jongh and Visser, Iemhoff [7] and Rozière
[15] established independently that an infinite basis is formed by the family of “Visser rules”
(n = 2, 3, . . .):

(

n∧
i=1

(qi → pi)→ (qn+1 ∨ qn+2)) ∨ r /
n+2∨
j=1

(

n∧
i=1

(qi → pi)→ qj) ∨ r.

More generally, the work of Rybakov [16] and Ghilardi [5, 6] has led to a reasonably com-
prehensive understanding of structural completeness and admissible rules for broad classes of
intermediate and modal logics. Kripke-frame based characterizations of hereditarily structurally
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complete (i.e., each extension of the logic is structurally complete) intermediate logics and tran-
sitive modal logics have been obtained by Citkin and Rybakov [3, 16]. Bases have been provided
for certain intermediate logics by Iemhoff [8] and for transitive modal logics by Jeřábek [11],
and Gentzen-style proof systems have been developed for these logics by Iemhoff and Met-
calfe [10, 9]. Note, moreover, that in these cases, admissibility is characterized in the wider
setting of multiple-conclusion rules, where, as the name suggests, many conclusions as well as
many premises are permitted. For example, a paradigmatic example of a multiple-conclusion
rule admissible in intuitionistic logic but not classical logic is the disjunction property, which
may be formulated as:

p ∨ q / p, q.

Mints demonstrated structural completeness for implication-less fragments of IPC and showed
moreover that any admissible underivable rule of IPC must contain both implication and dis-
junction [13]. Curiously, however, as observed by Wroński [18], the implication-negation frag-
ment (equivalently, the implication-falsity fragment) – the logic of bounded BCKW-algebras –
is not structurally complete. Consider, e.g., the following rule:

((¬¬p→ p)→ r), ((¬¬q → q)→ r), (p→ ¬q) / r.

This rule is not derivable in IPC and therefore not in any of its fragments. The rule is also not
admissible in IPC. However, it is admissible in the implication-negation fragment of this logic.

The goal of this short paper is to study the complexity of the set of admissible rules of the
implication-negation fragments of IPC. To achieve this goal we first describe a basis for the
set of admissible rules. The results and techniques used in this work can be extended to all
axiomatic extensions of the fragment and are studied in detail in the submitted paper [1], where
the reader may also find all omitted proofs.

2 Preliminaries

Let us denote by L the implication-negation fragment of intuitionistic logic IPC. The basic
connectives of L are taken to be → and ⊥, defining ¬ϕ =def ϕ → ⊥ and > =def ⊥ → ⊥. We
abbreviate ϕ1 → (ϕ2 → (. . . → (ϕn → ψ) . . .) by ϕ1 → ϕ2 → . . . → ϕn → ψ or ~ϕ → ψ. For
~ϕ = ∅, we understand ~ϕ→ ψ to be the formula ψ. We use Γ,Π,∆ without further comment to
denote finite sets of formulas and p, q, r to denote propositional variables. Since by the Glivenko
theorem, a set of formulas is L-consistent if and only if Γ 6`CPC ⊥, we drop the prefix and speak
just of consistency.

A rule for L is an ordered pair (Γ,∆), written Γ / ∆, where Γ∪∆ is a finite set of formulas,
called single-conclusion if |∆| = 1 and multiple-conclusion in general. We write ‘Γ / ϕ’, ‘Γ,∆’,
and ‘Γ, ϕ’ for, respectively, ‘Γ / {ϕ}’, ‘Γ ∪∆’, and ‘Γ ∪ {ϕ}’.

A logic such as L is traditionally understood as a set of single-conclusion rules (as our logic
is finitary we can ignore rules with infinite sets of premises), and we write Γ `L ϕ instead of
Γ / ϕ ∈ L. As we are interested in multiple-conclusion rules we need to introduce a notion of
multi-conclusion logic: an m-logic is a set M of rules (writing Γ `M ∆ instead of (Γ,∆) ∈ M)
satisfying for all finite sets of formulas Γ,Γ′,∆,∆′ and formula ϕ:

1. ϕ `M ϕ

2. if Γ `M ∆, then Γ,Γ′ `M ∆′,∆

3. if Γ, ϕ `M ∆, and Γ′ `M ϕ,∆′ then Γ,Γ′ `M ∆′,∆
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4. if Γ `M ∆, then σ(Γ) `M σ(∆) for each substitution σ.

We introduce a particular multiple-conclusion variant of L as:

Lm = {Γ / ∆ | (∃ϕ ∈ ∆)(Γ `L ϕ)}.

Finally, we formally introduce the crucial concepts of the paper: a rule Γ / ∆ is said to
be derivable if Γ `Lm

∆, and admissible, written Γ |∼L ∆, if for each substitution σ: whenever
`L σϕ for all ϕ ∈ Γ, also `L σψ for some ψ ∈ ∆. Clearly |∼L is an m-logic and contains Lm.
A basis for |∼L over Lm is a set of rules S such that |∼L is the smallest m-logic which contains
both Lm and S.

3 Basis of Admissible Rules

A basis for the admissible rules of L will consist of the following “Wroński rules” (n ∈ N):

(Wn) (~p→ ⊥) / (¬¬p1 → p1), . . . , (¬¬pn → pn)

Note that in the case of n = 0 (useful for technical reasons) (W0) is ⊥ / ∅ and is admissible
but not derivable.

Lemma 3.1 ([1]). (Wn) is admissible for each n ∈ N.

Observe on the other hand that these rules may not be admissible in fragments of an
intermediate logic containing ∧ or ∨ as well as→ and ⊥. In particular, for IPC, let σp1 = p∧¬q
and σp2 = q. Then `IPC σ(p1 → p2 → ⊥) but 6`IPC σ(¬¬p1 → p1) and 6`IPC σ(¬¬p2 → p2).

Let us denote by LW
m the least m-logic containing Lm and the rules (Wn) for each n ∈ N. We

show that these rules form a basis for |∼L over Lm, i.e., LW
m = |∼L . (Notice that the inclusion

LW
m ⊆ |∼L follows immediately from the previous lemma).

The first step of our strategy will be to ‘reduce’ the question of the admissibility of any rule
to the admissibility of rules of a certain basic form. Let us call a formula having one of the
following forms simple:

(i) ~p→ ⊥

(ii) ~ψ → r where each member of ~ψ is of the form p→ q or p.

The next lemma formalizes the ‘reduction’ idea. Its proof is based on replacing non-simple
formulas by formulas which are, in a sense, ‘more simple’. We provide a suitable complexity
measure and show that our ‘simplification’ procedure decreases it, thus obtaining that the
process terminates.

Lemma 3.2 ([1]). For any rule Γ / ∆, there exists a finite set of simple formulas Π such that:

1. Γ `LW
m

∆ iff Π `LW
m

∆

2. Γ |∼L ∆ iff Π |∼L ∆.

Next, our strategy will be to to construct a set ΨΓ of sets of formulas containing Γ and
reduce admissibility Γ |∼L ∆ to derivability of Γ′ `Lm

∆ for all Γ′ ∈ ΨΓ, which in turn we
further reduce to derivability of Γ `LW

m
∆. Roughly speaking the ΨΓ will contain all possible

exhaustive applications of the rules from W to Γ, i.e, we consider all sets of variables ~p such
that

Γ `L ~p→ ⊥
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and obtain new sets of formulas by adding for each such ~p a formula ¬¬p→ p for some p ∈ ~p.
Let us elaborate these ideas in detail. By Var(Γ) we denote the set of variables occurring in

Γ. We enumerate the sets of variables X ⊆ Var(Γ) such that Γ ∪X `L ⊥ as X1, . . . , Xn, and
define the following sequence:

1. Ψ0 = {∅}

2. Ψi = {Π ∪ {¬¬p→ p} | Π ∈ Ψi−1 and p ∈ Xi} for i = 1 . . . n.

Let ΨΓ = {Π∪Γ | Π ∈ Ψn}. Note that if Γ is inconsistent, then Xi = ∅ for some i ∈ {1, . . . , n}
and it follows that Ψj = ∅ for i ≤ j ≤ n, and so ΨΓ = ∅.

The two reductions mentioned above are formalized as:

Lemma 3.3 ([1]). Let Γ be a finite set of simple formulas. If Γ |∼L ∆, then Γ′ `Lm
∆ for all

Γ′ ∈ ΨΓ.

Lemma 3.4 ([1]). Let Γ be a finite set of simple formulas. If Γ′ `Lm
∆ for all Γ′ ∈ ΨΓ, then

Γ `LW
m

∆.

Theorem 3.5. W is a basis for |∼L over Lm.

Proof. We have to show that Γ |∼L ∆ iff Γ `LW
m

∆. One direction was established in Lemma 3.1.
To prove the second one suppose that Γ |∼L ∆. By Lemma 3.2, we can construct a finite set
of simple formulas Π such that Π |∼L ∆. But then by Lemma 3.3, Π′ `Lm

∆ for all Π′ ∈ ΨΠ.
Hence by Lemma 3.4, Π `LW

m
∆ and Lemma 3.2 completes the proof that Γ `LW

m
∆

4 Complexity

We start by defining set F (Γ) of sets of atoms and set Ψ′Γ of sets of formulas:

F (Γ) = {Y ⊆ Var(Γ) | (∀X)(Γ, X `L ⊥ ⇒ X ∩ Y 6= ∅)}
Ψ′Γ = {Γ ∪ {¬¬p→ p | p ∈ Y } | Y ∈ F (Γ)}.

Lemma 4.1. Let Γ be a set of simple formulas. Then Γ |∼L ∆ iff Π′ `Lm ∆ for each Π′ ∈ Ψ′Γ.

Proof. Suppose first that Γ / ∆ is admissible. Notice that for each Π′ ∈ Ψ′Γ there is Π ∈ ΨΓ

such that Π′ ⊇ Π, thus the left-to-right direction follows by Lemma 3.3. Since ΨΓ ⊆ Ψ′Γ, the
reverse direction follows by Lemmas 3.4 and 3.1.

Lemma 4.2. Let Γ be a set of simple formulas. Then deciding Π ∈ Ψ′Γ is solvable in non-
deterministic polynomial time (with respect to the size of Γ).

Proof. We show that Π = Γ∪{¬¬p→ p | p ∈ Y } ∈ Ψ′Γ iff Γ,Var(Γ)\Y 6`L ⊥, which reduces the
problem to satisfiability in classical logic. From the construction of Ψ′n we know that Π ∈ Ψ′Γ
iff Y ∈ F (Γ). To complete the proof we show that Y ∈ F (Γ) iff Γ,Var(Γ) \Y 6`L ⊥ For the first
direction, assume that Y ∈ F (Γ). Since (Var(Γ)\Y )∩Y = ∅, we obtain Γ,Var(Γ)\Y 6`L ⊥. For
the converse direction, assume that Γ,Var(Γ) \ Y 6`L ⊥ and Γ, X `L ⊥. Then X 6⊆ Var(Γ) \ Y .
I.e., X ∩ Y 6= ∅.

Theorem 4.3. The set of admissible rules of the implication-negation fragment of intuitionistic
logic is PSPACE-complete.
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Proof. PSPACE-hardness follows from the fact that the set of theorems for this fragment of
IPC is already PSPACE-hard [17]. Next, observe that Lemma 3.2 reduces our problem to the
problem of admissibility of rules with simple set of premises. By inspection of the proof of
this lemma in [1] we see that this reduction is polynomial. To solve this problem we use the
contrapositive version of Lemma 4.1. Consider a rule Γ / ∆ with simple premises. First we
observe that all Π ∈ Ψ′Γ are of polynomial size with respect to Γ. Thus, to show that Γ / ∆
is not admissible we can nondeterministically guess some X ⊆ Var(Γ) and ϕ ∈ ∆ and check
whether Π = Γ, {¬¬p → p | p ∈ X} ∈ Ψ′Γ and the IPC-nonderivability of Π / ϕ, a problem in
PSPACE. Finally, we use the fact that coNPSPACE = PSPACE.
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