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Abstract

We set up a framework that subsumes many important dualities in mathematics (Birkhoff, Stone,

Priestly, Baker-Beynon, etc.) as well as the classical correspondence between polynomial ideals and

affine varieties in algebraic geometry. Our main theorems provide a generalisation of Hilbert’s Null-

stellensatz to any (possibly infinitary) variety of algebras. The common core of the above dualities

becomes then clearly visible and sets the basis to a canonical method to seek for a geometric dual to

any given variety of algebras.

1 Introduction.

The starting point is the observation that the Galois connection between set of terms in a fixed
language, seen as polynomial evaluated on some algebra, and vanishing sets of these terms, can
always be made functorial yielding a dual adjunction. Modulo the Axiom of Choice, one can
extend this pair of functors to an adjunction between a variety and subspaces of a fixed algebra
in that variety carrying a non-trivial topology induced by the Galois correspondence (aka Zariski
topology). Notably, several known dualities such as Stone’s dualities for Boolean algebras and
distributive lattices, Priestly’s duality, Stone-Gelfand’s duality for real C∗-algebras, can be
nestled in this framework.

Similar approaches can be found in the work of E. Daniyarova, A. Myasnikov, V. Remeslen-
nikov, where the emphasis is put on the methods from algebraic geometry which become avail-
able and in the work of Y. Diers which investigates this adjunction at a more abstract categorical
level.

2 Notation.

Let V be a fixed but arbitrary (possibly infinitary) variety of algebras. We identify V with the
category V of all algebras in the variety, with their homomorphisms. Throughout, µ and ν
invariably denote cardinal numbers, whereas α and β invariably denote ordinal numbers. Let
also F (µ) the free algebra over µ generators in the variety V. Although elements of F (µ)
are equivalence classes of terms in the language of the variety V, we often use single terms as
representatives for their equivalence classes.

If s is a term, the notation s
(
(Xα)α<µ

)
means that the (finitely many) variables occurring

in s are among those in the tuple (Xα)α<µ. If s
(
(Xα)α<µ

)
∈ F (µ) and {tα}α<µ ⊆ F (ν), we

denote by s
(

[Xα\tα]α<µ
)

the term obtained from s by uniformly replacing each variable Xα

with the term tα. Obviously, s
(

[Xα\tα]α<µ
)
∈ F (ν).

∗Based on a joint work with O. Caramello and V. Marra.
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If A ∈ V we write Aµ for the Cartesian product of µ copies of A. If p ∈ Aµ, then s(p)
denotes the evaluation of the term s in the V-algebra A under the assignment Xα 7→ πα(p),
where πα : Aµ → A is the projection onto the αth coordinate, for each ordinal α < µ.

3 The general adjunction.

As above, let V be a fixed variety and fix any A ∈ V. We define two operators V and I as
functions between partially ordered sets, namely, the powersets of F (µ)×F (µ) and Aµ. The
notation VA and IA would be more precise as the operators obviously depend on the selected
algebra A. However, as A is fixed we prefer to lighten the notation by dropping the A in the
names of the operators.

Definition 3.1 (The operator I.). Given S ⊆ Aµ, let us define a relation I (S) on F (µ) by
stipulating that, for arbitrary terms s, t ∈ F (µ),

I (S) = {(s, t) ∈ F (µ)×F (µ) | A |= s(p) ≈ t(p), ∀p ∈ S}

for every p ∈ S ⊆ Aµ. We call I (S) the vanishing congruence of S.

Definition 3.2 (The operator V.). Given R = {(si, ti) | i ∈ I} ⊆ F (µ)×F (µ), for I an index
set, the vanishing locus of R is

V (R) = {p ∈ Aµ | A |= si(p) ≈ ti(p), ∀i ∈ I} .

Within this general framework, no matter on the choice of A and V one always has the
following:

Lemma 3.3 (Basic Galois connection). For each S ⊆ Aµ and R ⊆ F (µ)×F (µ),

R ⊆ I (S) if, and only if, S ⊆ V (R) .

In words, the functions V and I form a Galois connection.

Galois connections are basic instances of categorical adjunctions, so one may ask under
which circumstance the above correspondence can be made functorial. The answer is: always!
Let Vp be the category of presented V-algebras, i.e. algebras of the form F (µ)/θ with µ ranging
among all cardinals and θ among all congruences1.

Definition 3.4 (Definable maps). Given S ⊆ Aµ and T ⊆ Aν , a function λ : S → T is definable
if there exists a ν-tuple of terms (lβ)β<ν , with lβ ∈ F (µ), such that

λ( (pα)α<µ ) = ( lβ( (pα)α<µ ) )β<ν

Let us call Gdef the category of subsets of Aµ, with µ ranging among all cardinals, and
definable maps among them. We extend the above Galois connection to a pair of functors

I : Gop
def → Vp and V : Vp → Gop

def .

1If one assumes AC then V and Vp are obviously equivalent, however, as the presentation of an algebra plays
a main role in our construction, we prefer to explicitly work with presented algebras as above.
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Definition 3.5 (The functor I on objects.). For any S ⊆ Aµ, it is easy to check that I (S) is
a congruence on F (µ). In view of this, for any subset S ⊆ Aµ we define

I (S) = F (µ)/ I (S) .

Definition 3.6 (The functor I on arrows.). Given S ⊆ Aµ and T ⊆ Aν , let λ : S → T be a
definable map, and let (lβ)β<ν be a ν-tuple of defining terms for λ. Then there is an induced
function

I (λ) : I (T )→ I (S)

which acts on each s ∈ F (ν) by substitution as follows:

s
(

(Xα)β<ν
)

I (T )
∈ I (T )

I (λ)7−→
s
(

[Xβ\lβ ]β<ν
)

I (S)
∈ I (S) .

Definition 3.7 (The functor V on objects.). By the very definition of V, for any congruence
θ on F (µ) we have V (θ) ⊆ Aµ. We therefore set

V (F (µ)/θ) = V (θ) .

Definition 3.8 (The functor V on arrows.). Suppose a homomorphism of V-algebras
h : F (µ)/θ1 → F (ν)/θ2 is given. For each α < µ, let πα be the projection term on the
αth coordinate, and let πα/θ1 denote the equivalence class of πα modulo θ1. Fix, for each α,
an arbitrary fα ∈ h(πα/θ1). For any (pβ)β<ν ∈ V (θ2), set

V (h)((pβ)β<ν) =
(
fα( (pβ)β<ν )

)
α<µ

.

Let us just notice that the conspicuous issue in both Definitions 3.6 and 3.8 of well-
definiteness of the functors I and V can be proved to be immaterial.

Once all this is settled, the proof of the following statement becomes routine.

Theorem 3.9. The functor V : Vp −→ Gop
def is left adjoint to the functor I : Gop

def −→ Vp. In
symbols, V a I .

As any adjunction specialises to a categorical equivalence among its fixed points, one be-
comes naturally interested in possible characterisations of these fixed points. By the definitions
of I and V and Lemma 3.3 this reduces to studying the closure operators I ◦V and V ◦ I.

4 An abstract algebraic version of the Nullstellensatz.

Theorem 4.1. Let A be an algebra in V and θ a congruence of F (µ). Then the following are
equivalent:

(i) I V(θ) = θ.

(ii) θ =
⋂
a∈V(θ) I(a).

(iii) F (µ)/θ is a subdirect product of the family of algebras {F (µ)/ I(a)}a∈V(θ).

The effect of the Theorem above is that there always is a dual equivalence of categories
between the full subcategory of V where the objects are subdirect products of algebras of the
form F (µ)/ IA(a) and the category of “closed” (in the sense of Zariski) subspaces of Aµ, i.e.
spaces S for which S = V I(S).
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Corollary 4.2. For any variety V and for any A ∈ V the following are equivalent:

(i) For any µ and any completely meet-irreducible congruence θ ⊆ F (µ)2, there exists a ∈ Aµ
such that θ = IA(a).

(ii) For any µ and every congruence θ ⊆ F (µ)2 one has I V(θ) = θ.

In other words, the adjunction given by the pair I A ` V A is an equivalence itself if and only
if A satisfies item (i).

The question whether a certain congruence can be expressed as I(a) is pivotal in an explicit
characterisation of the duality lying behind the adjunction. The following theorem gives a
rather effective characterisation of the congruences that can be expressed as such.

Theorem 4.3. For any congruence θ ⊆ F (µ)2 the following are equivalent:

(i) there exists some a ∈ Aµ such that θ = IA(a).

(ii) the algebra F (µ)/θ embeds in A.

5 Applications.

In this section we quickly hint at how a number of classical results can re-proved using the
theorems above.

The classical Nullstellensatz. Let k be a field and k[X1, ..., Xn] be the polynomial ring
with coefficients in k. The field k can be regarded as a k-algebra over itself, set V to be
the variety of k-algebras generated by k and set A = k. The k-algebra k[X1, ..., Xn] belongs
to V. Even more, k[X1, ..., Xn] is the free algebra over n generators in the variety V. The
V I topology in this case is just the classical Zariski topology, so the above duality here is
given by the correspondence between coordinate algebras with their morphisms and closed
subspaces of kµ (aka affine varieties) and regular maps among them. Upon recalling that
homomorphisms of a k-algebra into k have a kernel which is a maximal ideal and that for
any ideal I,

⋂
{I ⊆ M | M is a maximal ideal} =

⋂
{I ⊆ P | P is a prime ideal}, Theorem

4.3 and 4.1 immediately give Hilbert’s classical Nullstellensatz as the characterisation of the
congruences fixed by the operator I V. They are exactly radical congruences, i.e. those that can
be written as the intersection of prime congruences.

Boolean algebras. Let A be the two element Boolean algebra {0, 1}, then one immediately
has that every subdirectly irreducible Boolean algebra embeds into A (A is the only subdirectly
irreducible Boolean algebra), hence by Theorems 4.3 and 4.1 one gets that there is a dual
equivalence between the category of Boolean algebras and closed subspaces of the generalised
Cantor spaces 2µ with its standard topology. Finally one notes that these closed sets (with the
induced topology) are the most general Boolean spaces (i.e. any other can be realised as such).

Other dualities that appropriately to fit in the above framework are Priestly duality for
distributive lattices, the duality between Tychonoff spaces and semisimple MV-algebras, Stone-
Gelfand duality for commutative real C∗-algebras, Baker-Beynon duality for finitely presented
Riesz spaces and the similar duality for Abelian `-groups.
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