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Abstract 

This paper uses an information-theoretic perspective to propose multi-locus 

informativeness measures for ancestry inference. These measures describe the potential 

for correct classification of unknown individuals to their source populations, given 

genetic data on population structure. Motivated by Shannon‟s axiomatic approach in 

deriving a unique information measure for communication (Shannon 1948), we first 

identify a set of intuitively justifiable criteria that any such quantitative information 

measure should satisfy, and then select measures that comply with these criteria. It is 

shown that standard information-theoretic measures such as multidimensional mutual 

information cannot completely account for informativeness when source populations 

differ in size, necessitating a decision-theoretic approach. 

1 Introduction 

Information is the resolution of uncertainty. 
-- Claude Shannon 

 

The research on the genetic structure of human populations takes diverse paths and involves 

complex statistical learning and analysis methods. Two of the most powerful approaches are 

clustering, which attempts to infer the underlying population structure, and classification, which 

assigns data of unknown origin to a most probable group. A third category of analysis is high 

dimensional structural analysis, such as principal component analysis, used for constructing low 

dimensional qualitative representations. Another common approach is to use diversity, differentiation 

and distance measures to quantify population relatedness and individual variability. The various links 

between genetic structure and principles from classical information theory have been pointed out from 

a variety of perspectives: examining the causal, semantic and transmission sense of information 

embedded in DNA (Maynard Smith 2000; Godfrey-Smith 2006; Bergstrom and Rosvall 2011), using 

information-theoretic terms to quantitatively model processes such as drift, mutation, selection, gene 

flow (Smith 2011), or modeling the evolution of complex traits (Plotkin and Nowak 2000). 

 

The use of an information-theoretical approach to derive measures for the information content of 

genetic markers has been utilized for assignment of genotypes to their source populations (Rosenberg, 

Li, et al. 2003) and measuring the informativeness of a marker for relationship or relatedness 

inference (Wang 2006). Previous work on classification performance and informativeness for 

assignment in the context of genetic data had identified three basic properties of related measures: [a] 

higher informativeness with additional loci, [b] higher informativeness with wider population 



divergence, and [c] higher informativeness with larger population sample size (Estoup and Angers 

1998; Cornuet, et al. 1999; Edwards 2003; Rosenberg, Li, et al. 2003; Rosenberg 2005; Witherspoon, 

et al. 2007; Tal 2012). A central goal of this paper is to extend this set of properties, revealing 

important intrinsic aspects of such information measures. For simplicity, we consider a haploid 

population model with known allele frequencies from biallelic loci from two subpopulations with 

given class priors. The approach is motivated by Shannon‟s axiomatic program in deriving a measure 

for of the rate of information produced by a discrete information source, formally resembling Entropy 

in statistical mechanics (Shannon 1948). We first propose a set of necessary and sufficient justifiable 

properties that any quantitative information measure should satisfy. The next step is to examine a host 

of candidate measures based on popular divergence measures, distance metrics and classification 

schemes against these criteria, to finally arrive at a measure that strictly complies with the complete 

set. 

 

1.1 The Motivation from Shannon 

In Shannon‟s groundbreaking 1948 paper, each message received represents gain in information 

and decrease in uncertainty. Information and uncertainty are thus two sides of the same coin: the more 

uncertainty there is, the more information we gain by removing the uncertainty (Frigg and Werndl 

2011). Shannon posits a measure defined on discrete probabilities of events from an information 

source:  

 
Can we define a quantity which will measure, in some sense, how much information is 

“produced” by such a process [a discrete information source], or better, at what rate 
information is produced? Suppose we have a set of possible events whose probabilities of 
occurrence are p1, p2,…, pn. These probabilities are known but that is all we know concerning 
which event will occur. Can we find a measure of how much “choice” is involved in the 
selection of the event or of how uncertain we are of the outcome?  

 

Shannon proceeds to propose a set of three “reasonable” properties any such measure H should 

comply with: [1] H should be continuous in the pi; [2] If all the pi are equal, pi = 1/n, then H should be 

a monotonic increasing function of n; and [3] H should be the weighted sum of the values of H 

resulting from splitting the probabilities into successive choices. It is then proved that the only H 

satisfying the three assumptions is of the form, 
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The discussion follows with additional three “interesting properties which further substantiate it as 

a reasonable measure of choice or information”, namely [a] H >= 0 and is zero only if all the pi are 0, 

apart from one pi which is 1; [b] maximum value of H is log(n), attained when all pi=1/n; and [c] any 

change toward equalization of the probabilities pi increases H. Shannon found that only three 

properties [1-3] were required for arriving at a unique formulation for H, whereas these latter 

properties [a-c] only substantiate H as a reasonable measure. Similarly, we first impose a set of 

reasonable criteria on any informativeness measure, and justify them from considerations of aspects 

of classification. Several of these criteria will resemble in structure and motivation Shannon‟s 

properties, particularly when expressed symbolically.
*
 Subsequently, we specify a small set of 

properties that do not have strong prior intuitive justification, but nevertheless provide more insight 

into the nature of an informativeness measure. In the spirit of Shannon, we specify no optimality 

                                                           
* Symbolic forms for the three necessary properties of H were described subsequent to Shannon‟s paper. Expressed 

symbolically, they bear a strong resemblance to the formal definition for the criteria in the next section. For instance,  
Hn+1(p1,…,pn,0) = Hn(p1,…,pn,0,), or Hn(p1,…,pn) ≤ Hn(1/n,…1/n) or Hn(1/n,…1/n) ≤ Hn+1(1/(n+1),…1/(n+1)). 



criterion: the numerical value of H is only meaningful in relation to other distributions to which H is 

applied (H is unique only up to a constant).
†
  

2 The Criteria  

We denote by Cn any information measure across a set of n loci from two haploid populations that 

complies with a given set of criteria.
‡
 More specifically, Cn(P,Q) is a measure of informativeness for 

classification given a set of n biallelic markers, where P and Q are vectors of known allele frequencies 

(p1,…, pn) and (q1,…, qn) in Q
n
 from populations 1 and 2 respectively, and where 0<pi<1 and 0<qi<1. 

We assume pi and qi are true population parameters of polymorphic loci, i.e., each locus in each 

population is properly biallelic. Let α be the prior of population 1 (such that 1-α is the prior of 

population 2), the probability that an individual belongs to population 1 when its genotype is unknown 

(reflecting possible discrepancy in population sizes). In effect, if we denote by NX the size of 

population X, then α = N1/(N1+N2). The full notation then becomes Cn(α,P,Q) with the shorter notation 

appearing where contextually sufficient.  

 

[1] Zero: For equal priors (α=½), Cn=0 if n=0 or pi=qi for all loci i. Less formally, for populations 

of equal size, if there are no loci to examine, or if allele frequencies are exactly equal across loci 

between populations, there is zero information available for classification. This criterion resembles 

Shannon‟s first descriptive property for a condition under which H=0. 

[2] Non-negativity: Cn ≥ 0. An information measure is expected to be non-negative. This criterion 

also resembles Shannon‟s first descriptive property for H, namely, H≥0. 

[3] Bound: Cn < 1. The information measure should have an upper bound that signifies the 

possibility of definite classification. This bound along with non-negativity and the minimum of zero 

allows Cn to be interpreted as a probability or subjective Bayesian certainty about accurate 

classification. This criterion resembles Shannon‟s second descriptive property for H.
§
 

[4] Performance: Cn should be a monotonic non-decreasing function of n. Informally stated, each 

additional locus may only add information for classification. This criterion resembles Shannon‟s 

second requirement for H. 

[5] Convergence: if allele frequencies at each locus differ between populations by at least ε, where 

ε is any predefined value as small as we wish, 0<ε<1, then Cn asymptotically equals 1 as n→∞. In 

other words, complete information exists with an infinite number of loci given any minimal 

predefined frequency difference.
**

 This criterion implies that in practical sequencing situations, where 

frequencies of polymorphisms differ by some infinitesimal amount between populations, the inclusion 

of additional markers eventually results in Cn→1. Note that criteria #3 together with #4 are not 

equivalent to this criterion. 

[6] Neutrality: The inclusion of uninformative loci (for which qi = pi) should not affect Cn. Note 

that this does not imply that an informative locus should necessarily modify Cn. 

[7] Continuity: Cn should be continuous in pi, qi and α. This criterion resembles Shannon‟s 

requirement for continuity in H.  

                                                           
† Subsequent generalizations of entropy, such as Tsallis entropy or Renyi entropy are similarly relative, merely highlighting 

different aspects of the distribution. 
‡ The use of the term measure with respect to Cn should not be interpreted in the strict sense as a mathematical notion of 

measure over sets. 
§ If we define C’n=-log(1-Cn) so that it ranges from 0 to infinity like entropy H, the measure would lack the benefit of 

representing maximal informativeness (zero classification error rate). Indeed, H is sometimes normalized to express a 
“deficiency in entropy” from optimal distribution: Efficiency = H/log(n). 

** Note that criteria #3 with #4 are not equivalent to criterion #5. Without the latter criterion, Cn could be less than 1 at the 

limit. 



[8] Dominance: Cn→1 if δi = |qi – pi|→1. A single locus with maximal allele frequency difference 

should enable definite classification of any individual.
††

 The asymptotic limit (→1) follows from the 

Continuity criterion. We note that human SNP data may reveal very high differentiation at many sites, 

especially at X-linked loci. For e.g., Casto et al. on report 159 X-linked SNPs with frequency delta 

greater than 0.9 in the Yoruba-Han dataset (Casto, et al. 2010).
‡‡

 

[9] Loci invariance: Cn should be invariant to different ordering of sequenced loci, i.e., the 

components of the frequency vectors P and Q may be specified in any order, as long as they remain in 

sync. 

[10] Symmetry invariance: Cn(P,Q) = Cn(Q,P).
§§

  

[11] Allocation invariance: Cn should be invariant to the arbitrary choice of the alleles to which we 

assign the frequency parameters. Thus the concurrent substitution of pi with (1- pi) in P and qi with (1-

qi) in Q should not affect Cn. 

[12] Priors: Cn → 1 if α → 0 or α → 1. At a limit, extremely unequal priors induce complete 

information for classification; i.e., if one population is infinitely larger than the other, the probability 

for correct classification is 1, irrespective of allele frequencies.  

In more formal terms: 
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Following Shannon, we suggest a few properties which further substantiate Cn as a reasonable 

measure of information for assignment.  

[a] Triviality: At equal priors, C1 = |q-p|. This formulation for C1 reflects the simplest measure for 

divergence at a single locus: absolute allele frequency difference (δ=|q-p|). 

[b] Population subadditivity: Cn complies with a triangle inequality when interpreted as a distance 

measure between populations. Formally, 

),,(),,(),,( RPCRQCQPC nnn    

                                                           
††

 With k alleles and c populations, we can have Dominance if k ≥ c.  
‡‡ However, distinctive alleles present in all individuals of one region but absent from individuals outside the region do not 

exist for human microsatellite data (Rosenberg 2005).  
§§ Nevertheless, exchanging only some of the pi in P with the corresponding qi in Q may change Cn. 



where the three priors are naturally defined in terms of relative population sizes, α=N1/(N1+N2), 

β=N2/(N2+N3), γ=N1/(N1+N3). The first two priors define the third: solving for N1 and N3 in terms of α 

and β, 
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The following section examines several proposals based on standard differentiation, divergence, 

distance and information measures, illuminating the drawbacks of each and preparing the ground for 

introducing a proposal satisfying the complete set of criteria. 

3 Proposals for Cn  

3.1 Differentiation Measures 

Wright‟s fixation index FST is a classic measure of population differentiation. It is commonly 

defined in terms of expected heterozygosity (Boca and Rosenberg 2011; Tal 2012). In terms of the 

underlying allele frequencies at a single locus i from two populations we have, 
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A multilocus FST requires separately averaging the numerator and denominator across loci (Weir 

1996) such that our first proposal becomes, 
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However, this proposal fails both the Dominance and the Performance criteria (e.g., it is evident 

that Performance fails when alleles across loci have the same frequency in each population: as n 

increases Cn remains constant).  

3.2 Information-Theoretic Measures  

A powerful measure of statistical dependency is the mutual information. The use of mutual 

information at a single-locus has been explored in the context of feature selection (Peng, Long and 

Ding 2005) and informativeness (Rosenberg, Li, et al. 2003). Let X={0,1} represent source 

populations 1 and 2 respectively, and let Yi={0,1} represent the allele at our biallelic haploid locus i, 

with pi = Pr(Yi=1 | X=0) and qi = Pr(Yi=1 | X=1). Formally, assuming equal class priors, 

)(~),(~)1|(),(~)0|(
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From basic definitions, 
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Note that this is identical to In (Rosenberg, Li, et al. 2003, Eq. 4). Averaging across loci and 

normalizing (assuming all logarithms are to base e) to comply with the required bounds for Cn, 
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However, this proposal fails the Performance criterion. Since mutual information can 

incorporate multivariate random variables, we may quantify the dependency of the source population 

(X) and the joint distribution alleles across n loci (Yi).
***

 From basic definitions of mutual information 

and conditional probability, 
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Assuming linkage equilibrium, the joint multivariate distributions [Y1,…,Yn | X] and [Y1,…,Yn] may 

be expressed in terms of the allele frequencies p(yi | X), 
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and from the law of total probability,  

)1()1|,...,()0()0|,...,(),...,( 111  XpXyypXpXyypyyp nnn  

Finally, we introduce class priors,   1)1(,)0( XPXP , such that, 
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Where (noting that by definition hk=gk=1 for n=0), 
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and where fn is an indicator function for traversing the 2
n
 genotypes of each population, 

transforming the n-multiple sum (1) to a single sum, 
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If all logarithms are taken to base e then ]),...,[;( 1 nYYXI is bounded above by log(2), which we 

use for normalization, 
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This proposal fully satisfies the Performance criterion, even for unequal priors.
†††

 However, this 

measure only satisfies the Dominance criteria for equal priors. It is sufficient to show by counter-

example that Dominance fails at some scenario (illustrated by Fig. 1A). Furthermore, this measure 

                                                           
***

 A similar use of mutual information by (Peng, Long and Ding 2005) is targeted for feature selection, where the object 

is to find a feature set S with m features that jointly have the largest dependency on the target class – a theoretical scheme called 
Max-Dependency.  

††† Interestingly, this Cn satisfies a strong version of the Performance criterion: it is monotonic increasing at each extra 

locus, rather than merely monotonic non-decreasing (also for unequal priors). 



also fails the Priors criterion since Cn approaches 0 (instead of 1) as the prior approaches the extremes 

of 0 or 1 (Fig 1B).  

.A                                                                            B 

 
Fig 1. Cn based on multilocus mutual information fails two criteria. A: Cn does not satisfy the Dominance 

criterion for unequal population priors. Shown for population 1 prior α=0.2, and 4 loci with frequencies 

pi=0.1/qi=0.3 with the 5th locus reaching full differentiation, p5=0/q5→1.| B: Cn does not satisfy the Priors 

criterion. Shown for 5 loci with frequencies pi=0.1/qi=0.3 and prior α ranging from 0 to 1. 

3.3 ƒ-divergence Measures  

An ƒ-divergence is a function Df (P||Q) that measures the difference between two probability 

distributions P and Q. The divergence is intuitively an average of the odds ratio given by P and Q, 

weighted by the function f that is convex over (0,∞) and satisfies f(1) = 0. 
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The use of f-divergences here is motivated by the properties they hold, which resemble our set of 

criteria. Such properties are non-negativity (equal to zero if and only if probability densities coincide), 

convexity, boundedness and various features of invariance (Cichocki and Amari 2010). Moreover, 

these functions are classically interpreted as modeling discrimination information between hypotheses 

(Toussaint 1975). 

 

Kullback-Leibler Divergence 

The Kullback-Leibler divergence can be intuitively considered as a distance measure between the 

two probability densities. For probability distributions P and Q of a discrete random variable their KL 

divergence (non-negative and unbounded) is defined to be, 
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Kullback and Leibler defined a symmetric version of their divergence (Lin 1991), 
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The symmetric KL divergence seems to be a good candidate for Cn. In terms of the genotype 

probabilities h and g in (3), 
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Normalization is required to transform its unbounded range of [0, ∞) (Nielsen and Boltz 2011) to 

[0, 1),    
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However, this formulation can be shown to fail the Dominance criterion. We also note that it does 

not have the Population subadditivity property, since the symmetric KL divergence fails the triangle 

inequality and is therefore not a metric (Khosravifard, Fooladivanda and Gulliver 2007). 

 

Jensen-Shannon Divergence 

A popular symmetrized version of KL divergence is the Jensen-Shannon (JS) divergence, which 

has some attractive features: it is symmetric, bounded and always defined (even for zero 

probabilities). A generalized form of the JS Divergence incorporates distribution weights 

(corresponding to our prior α), 
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In terms of the genotype probabilities h and g (2.3.0) and setting kkk ghm )1(   ,   
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Noting that the square root of the JS Divergence is a metric (Endres and Schindelin 2003) and 

using normalization, we produce the following expression, 

)2(nlDC JSn    

It is immediately evident that DJS is precisely in the form of the multilocus mutual information in 

(2). Therefore a formulation of Cn based on DJS would also fail the Dominance criterion for unequal 

priors. An interesting corollary is that if )1(~ BernoulliX ,
‡‡‡
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The Hellinger Distance 

The Hellinger distance (HD) is also a type of f-divergence and is related to the Bhattacharyya 

coefficient (BC),
§§§
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Given that 0 ≤ HD ≤ 1 (Nielsen and Boltz 2011), we simply let, 
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However, there is no way to introduce the class priors in this formulation: simply replacing the 

likelihoods hk and gk with the posterior probabilities αhk and (1- α)gk would render the priors 

arbitrarily interchangeable in the product.  

                                                           
‡‡‡ This result was implied in relation to KL Divergence and multiple classes (Vasconcelos and Vasconcelos 2004). 
§§§ The Bhattacharyya coefficient is closely related to the Bayes error for the special case of equal priors and two classes, 

and can be used to provide upper and lower bounds for this error (Djouadi, Snorrason and Garber 1990; Aherne, Thacker and 

Rockett 1998).  



 

The Mahalanobis Distance 

The Mahalanobis squared distance (
2 ) is not strictly an f-divergence but a part of a broader class 

of (Bregman) divergences, and may be seen as an extension of the Euclidean metric, 
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The population means, or centroids, are simply the vectors of our allele frequencies (irrespective 

of possible linkage disequilibrium or the choice of distance metric), 
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Assuming linkage equilibrium, the diagonal covariance matrix is the mean of the two covariance 

matrices, 
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The distance between the two centroids is therefore,  
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Alternatively, using an L1 norm 



n

i

ii yxyx
1

1 |||||| , 


 




n

i iiii

ii

qqpp

qp
MM

1

21
)1()1()1(

||
),(


 

Finally, with proper normalization (since the distances are unbounded), 
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This formulation (using either Mahalanobis or the L1-Mahalanobis) satisfies the Dominance 

criterion also for unequal priors, but fails the Priors criterion, as Fig. 2 demonstrates. 

 
Fig 2. Cn based on Mahalanobis distances does not satisfy the Priors criterion (we require Cn→1 if α→0 or 

α→1); shown for 4 loci, pi=0.1/qi=0.2 and α ranging from 0 to 1.  



3.4 Classifiers  

The Naïve Bayes Classifier 

Quantifying multi-locus information could also be approached from a decision-theoretic 

perspective, using insights from supervised learning classification schemes. The optimal classifier 

under known class-conditional densities is the Bayes or maximum-likelihood (ML) classifier, where 

data are classified according to the most probable class (due to the MAP Rule). The expected error or 

misclassification rate of the Bayes classifier is called the Bayes error (Hastie, Tibshirani and 

Friedman 2009). The standard assumption of linkage equilibrium within populations (absence of 

within-class dependencies) motivates the use of a naïve Bayes classifier, where class-conditional 

likelihoods are expressed as the product of allele frequencies across the independent loci (Cornuet, et 

al. 1999; Phillips, et al. 2007). The Bayes error can be formulated as a prior-weighted sum of 

probabilities over the 2
n
 possible genotypes indexed by k,  
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where the genotype frequencies gk and hk are defined in (3). To gain some intuition consider the 

expressions for E1 and E2, 
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   (5) 

Since for two classes the error rate E of any classifier ranges 0 to ½, a straightforward 

transformation conforming with the Range criterion of [0,1) is Cn=1-2E, 
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This is equivalent to the formulation of ORCA (Rosenberg, Li, et al. 2003). An alternative 

formulation derives from the equivalence of the Bayes error for two classes and the variational 

distance (a form of f-divergence), even for unequal priors (Nguyen, Wainwright and Jordan 2009, 

section 2.1.1); see Appendix A here for a simple proof given equal priors.
****

 This equivalence results 

in an alternative expression to (6), 
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This formulation of Cn obeys all 12 criteria and attains the extra properties (Appendix B). Finally, 

we note that if linkage disequilibrium is nevertheless a feature of the data, the naïve Bayes classifier 

will have reduced performance, but Cn would remain compliant with all criteria and properties. Fig. 3 

is a numerical simulation of two criteria. 

 

 

 

 

 

 

 

                                                           
**** For equal priors it is the only f-divergence that is a metric (Khosravifard, Fooladivanda and Gulliver 2007). 



A      B  

  
Fig 3. A: Cn based on Bayes error has the Convergence property: Cn→ 1 as n→∞. Shown here for class prior 

α=0.4 and allele frequencies pi=0.1/qi=0.3 using Monte Carlo simulation of (6). | B: Cn based on Bayes error has 

the Dominance property: Cn→ 1 as |qi – pi|→1. Shown here for three cases of class priors, under a five loci 

scenario, where q5 changes from ≈0 through ≈1 while p5≈0; the other 4 loci have frequencies: p1=0.01/q1=0.3, 

p2=0.2/q2=0.35, p3=0.4/q3=0.3, p4=0.1/q4=0.15.  

4 Discussion and Conclusion 

In this paper, we have formulated a measure complying with a predefined set of criteria to capture 

the informativeness of a collection of markers for population assignment. The informativeness may be 

seen as the reduction in uncertainty regarding the ancestry of the genotype given these markers. This 

reduction in uncertainty originates from the fact that each ancestral population has a distinct 

distribution of over this set of markers (Bercovici and Geiger 2009). We have taken an approach 

analogous to Shannon‟s axiomatic program for deriving a measure of the rate of information produced 

by a discrete information source. Criteria for an information measure are first justified from intuitive 

considerations, and subsequently employed to arrive at viable formulations. A similar approach was 

adopted by Lewontin in a widely cited paper on the apportioning of genetic variation in human 

populations (Lewontin 1972). Lewontin had adopted Shannon‟s information measure H as a diversity 

measure for the purpose of ascertaining average population differentiation with respect to a limited set 

of genetic loci. Four characteristics reminiscent of Shannon‟s properties for information were 

specified as a requirement for any (single-locus) diversity measure: [a] minimum when a single allele 

is present, [b] maximum when all alleles have equal frequencies, [c] generally increase with the 

number of alleles present, and finally, [d] the pooling of two populations should result in a higher 

diversity, compared to the average of their separate diversities. In particular, while the first three 

characteristics are equivalent to three of the properties of H proposed by Shannon, the fourth is 

original, deemed pertinent specifically to a measure of genetic diversity. 

 

We have shown that a measure of informativeness based on an optimal Bayes classifier complies 

with the full set of the proposed criteria. However, it is important to emphasize that it cannot be 

assumed a-priori that any classifier operating on genetic data could similarly be utilized. For e.g., the 

simple „population-trait‟ classifier (Witherspoon, et al. 2007), with an error rate modeled by 

generalized binomial distributions for haploid populations (Tal 2012), can be shown to fail the 

Dominance criterion, and in some instances, the Performance criterion. There does not seem to be a 

simple general heuristic for identifying classifiers that may be utilized for the present purpose; 

instead, each candidate must be checked against all target criteria. 

 



Interestingly, compliance with a subset of criteria and one property would deem Cn a metric above 

a set of populations, for equal priors (α = ½ is required from criterion #1). A metric on a set X is a 

distance function d: X × X → R, where R is the set of real numbers. If x, y, z are in X, this function is 

required to satisfy four conditions, which express intuitive notions about the concept of distance:
††††

 

1. d(x, y) ≥ 0 (our non-negativity criterion)
‡‡‡‡

 

2. d(x, y) = 0 if and only if x = y (our zero criterion)  

3. d(x, y) = d(y, x) (our symmetry criterion)    

4. d(x, z) ≤ d(x, y) + d(y, z)  (our Population subadditivity property) 

Indeed, if we represent populations by their allele frequency vectors, then Cn may be seen as a 

population distance metric. In contrast, standard differentiation measures such as FST are often 

perceived as population distances but are not properly metrics (see (Jardine 1971) for early proposals 

of dissimilarity coefficients as metrics over a set of populations).
§§§§

 

 

It was also shown that a previously proposed multi-locus information-theoretic measure based on 

mutual information In (Rosenberg, Li, et al. 2003) fails both the Dominance and Priors criteria under 

unequal population priors (Fig. 1). Therefore, In could not function as a measure of absolute 

informativeness; i.e., it could not be used to compare the information content of a collection of loci 

from one set of populations with a collection of loci from a different set of populations. For instance, 

consider two populations of unequal size where a different allele is fixed in each at a single locus (i.e., 

maximum frequency differentiation, |q-p|=1). If we compute a multi- or single-locus In that includes 

this locus, we would have In<1 (since it was shown that Dominance fails for unequal priors), although 

it is obvious that any proper classification method of unknown genotypes should achieve a 100% 

success rate. In contrast, a different pair of populations without complete differentiation at any single 

locus may have higher In although it is obvious that there is less information for correct assignment. 

We note that In can still function perfectly well for its intended purpose of panel selection (also known 

as „feature selection‟ in statistical learning applications), where different sets of loci (or single 

markers) from the same meta population are compared for highest informativeness.  

 

Future work will be required to extend the set of criteria and resulting formulations to capture 

various aspects of practical applications – the use of population samples for estimating allele 

frequencies and the possible presence of linkage disequilibrium. In addition, it would be useful to 

generalize the model to comply with diploid genotypes, multiple population scenarios and multi-

allelic loci.   

5 Appendix  

Appendix A – The equivalence of Bayes error and the variational distance 

Here we develop a proof for equal priors only. For the purposes of this proof, pi and qi do not 

denote allele frequencies but rather genotype frequencies. It is required to prove that, 
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where, 

                                                           
†††† While Cn(P,Q) is a metric under equal priors, it is not a norm since the sum P+Q is meaningless. 
‡‡‡‡ Note that the upper bound of 1 from criterion #3 does not detract from the metric quality of Cn. Take for example the 

distance metric d(x,y)=min{|x-y|,1}. 
§§§§ Another option is to standardize by the number of loci, using Cn/n, to remove the dependency on n. 
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Proof: Let S denote the subset of all indices i, for which pi<qi and T denote all other indices i. 

Then for all pi, qi whose indices are in S we have |pi-qi|=qi-pi; similarly, for all pi and qi whose indices 

are in T we have |pi-qi|=pi-qi. Therefore, 
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Appendix B – Proof of compliance of Bayes Cn with all criteria 

[1] Zero: If pi = qi for all i then hk = gk for all k, and therefore from (7), 
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And if α = ½ (equal priors) we have Cn = 0, and also C0 = 0. Note that since Cn(P,P)=|2α -1| it is 

follows that with unequal priors Cn cannot strictly be a metric over vectors of frequencies. 

[2] Non-negativity: Cn ≥ 0 follows from the sum of absolute values in (7) being ≥ 0. A corollary of 

#1 above provides the stronger result of Cn ≥ |2α -1|. 

[3] Bound: Cn < 1 follows from the lower bound of zero of the Bayes error and the relation Cn=1-

2En. 

[4] Performance: Cn+1≥Cn follows from En+1≤En, where En is the Bayes error given the same 

distributions (Appendix B.1). An interesting corollary is incorporating an extra locus is not always 

informative and will not improve classification performance. Formally, without loss of generality, 

),()),,...,(),,,...,((,0, 111111 QPCpqqpppCp nnnnnnn    .  

It can be shown that the range of ε for which this invariance is satisfied is wider with more unequal 

priors.  

[5] Convergence: First, note that a corollary of criteria #2 and #3 is only that 

]1,|12[|  nn Cmli , a weaker result than is demanded by this criterion.
*****

 For the proof 

that Cn →1 as n→∞ see Appendix B.2. 

[6] Neutrality: To prove that Cn=Cn+1 if pn+1=qn+1 first note from (5) and (6) that Cn+1 has twice the 

number of terms than Cn. After arranging of terms we have, 

nnnnnn CCpCpC   )1( 111  

[7] Continuity: Since there are no singularities in Cn and since pi=qi are real-valued parameters, Cn 

is continuous with respect to its parameters.  

                                                           
*****  The compliance of Cn with this criterion suggests that Theorem 4 in (Rosenberg 2005), which proves for the 

informativeness measure In that convergence at infinity is to a number possibly smaller than 1 (for two populations and prior α, 

]1,}1,{[   xmaImli nn
) is a weaker version of this criterion. Our stronger version applies under practical 

implementations, where frequencies of polymorphisms analyzed differ by any minimal amount between populations.  



[8] Dominance: To see that Cn→1 if |qi – pi| → 1 consider the expression for En in (4) and without 

loss of generality examine the effect of |qn – pn|→1. Each of the 2
n
 summands is one of either four 

forms, 
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Now, from |qi – pi|→1, if pn→0 then qn→1 and all summands in the form of a and b reduce to zero 

due to the first term, and all summands in the form of c or d reduce to zero due to the second term. If 

pn→1 then qn→0 and all summands in the form of a and b reduce to zero due to the second term, and 

all summands in the form of c and d reduce to zero due to the first term. This results in En→0 and 

consequently Cn → 1.  

[9] Loci invariance: Since the genotype probabilities hk and gk in (6) are each a commutative 

product of allele frequencies from all loci, Cn is invariant to different ordering of loci.  

[10] Symmetry invariance: The truth of Cn(P,Q) = Cn(Q,P) simply follows from the presence of an 

absolute value in the formulation of (7). 

[11] Allocation invariance: The simultaneous substitution of pi with (1-pi) and qi with (1-qi) 

simply changes the order of the summation terms in (7) and thus does not affect Cn. 

[12] Priors: If α → 0 or α → 1 then one of the two terms within the sum in (7) diminishes to zero 

and what remains in the limit is the sum over all genotype probabilities in one population, which 

equals 1, and therefore Cn→1.   

 

The formulation of Cn in terms of the Bayes error also conforms to the two extra properties: 

[a] Triviality: In the general case from (7), 
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and for equal priors, 
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[b] Population subadditivity: The compliance of Cn with the triangle inequality follows from the 

formulation in (7) which describes the variational distance - a measure that satisfies the triangle 

inequality, even for unequal priors (Khosravifard, Fooladivanda and Gulliver 2007).  

 

Appendix B.1 – Proof of the Performance criterion for Bayes-based Cn 

We are required to prove that 01  nCC nn
where, niqp ii ...11,0  . 

For simplicity, instead of Cn we examine on En, where Cn=1-2En, and would like to prove that En+1 

≤ En. From (4), 
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In general, the k-th summand Xk of En (there are 2
n
) is split to X2k +X2k+1 in En+1,  
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where p, q are the frequencies at the (n+1)-th
 
locus. There are two cases: 



If kkk hghnmi   ))1(,( , then by simple algebra, 
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else, kkk gghnmi  )1())1(,(  , and then similarly, 

 
))1()1(),1(())1(,(

)1()1()1()1())1(,(

qgphinmqgphinm

qgqggghnmi

kkkk

kkkkk








 

Finally, summing these inequalities over k:1 to n, results in En+1 ≤ En.
 †††††

 

 

Appendix B.2 - Proof of the Convergence criterion for Bayes-based Cn 

We need to prove that for any predefined value 0<ε<1, if |qi-pi|>ε for all i then Cn→1. We prove 

here the equivalent result, En→0, where Cn = 1-2En. First, we relate En to the error rate of the 

„population-trait‟ classifier (Witherspoon, et al. 2007), modeled by generalized binomial distributions 

(Tal 2012), call it Gn, by making a small correction of some allele frequencies: the generalized 

binomial model requires that pi<qi, so whenever this is not the case replace pi with 1-pi and qi with 1-

qi, so that qi-pi>ε. This does not change the Bayes error, as can be seen from, 
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Now, since the Bayes error is a lower bound on the error achievable from any classifier we have 

En≤Gn. Next, we relate Gn to the misclassification rate from a simple binomial model (Tal, 2012), call 

it Bn. For a population with allele frequencies pi the generalized binomial distribution has mean and 

variance, 
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where and pV are the mean and variance of pi, respectively. Since Var(X) is always lesser or 

equal to a binomial with p=π, and since qi - pi > ε for all i implies that πq – πp > ε, we have that Gn≤Bn. 

Next, we show that Bn→0 as n→∞, given q-p > ε.  
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Since the minimum of two nonnegative quantities is bounded by their geometric mean, we have, 
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We now note that the geometric mean is bounded by the arithmetic mean, with equality iff the two 

quantities are equal. In particular, 2/)(= qprqp   for some 1<<0 r , and 

2)/)((1=)(1)(1 qpsqp   for some 1<<0 s . Note we assume qp   here. So, 

                                                           
††††† A different proof can be found in (Rosenberg 2005). 
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Next, observe that 
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 where 1<),(=<0 srxmat . So we have, 
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By the binomial theorem the sum is just 1 . So we get, 

         n

n tB )1(    

Since 1<<0 t , we finally get 0=nn Bmli 
as needed. 

Finally, from En≤Gn≤Bn we have En→0 as n→∞, and from Cn = 1-2En we get Cn→1. 
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