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Abstract 

A nonlinear autoregressive exogenous artificial neural network model was 

developed to predict turbidity response in two different trunk mains with measured flow 

and turbidity data. Models were initially established to prepare the data and 

automatically select the appropriate events for model training. Then, an autoregressive 

exogenous network model was developed and applied to predict turbidity responses 

based on past events in the time series. A per site continual data driven calculation of 

turbidity event risk was included as an additional input to capture the effect of temporal 

distance between the selected events as well as increasing the accuracy of the 

predictions. The calculated normalised mean square error and mean absolute error 

showed that the developed model combined with the data preparation and pre-

processing models provides good regressions on a future event with a period of 7 to 10 

hours for a multi-step ahead prediction. Furthermore, the result of the autoregressive 

exogenous network was compared with the output of a feed-forward network where the 

former significantly outperformed the latter (R value of approximately 0.97 compared 

to 0.66). 

Keywords: Machine learning, ANN, NARX, Trunk mains, Turbidity, Water 

distribution systems 

1 Introduction 

Although significant effort has been dedicated to solving the discolouration problem in Water 

Distribution Systems (WDS), it remains a challenging task for water service providers (WSP) to attain 

regulatory demands and maintain customer satisfaction. In 2016, WSP in the UK were contacted 12.2 
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times per 10,000 people due to discoloured water, the greatest source of customer dis-satisfaction 

(Drinking Water Inspectorate, 2016).  

The primary cause of discolouration events in WDS has been shown to be changes in network 

hydraulic loading mobilising discolouration material that is constantly accumulating across the full 

pipe circumference and with a shear strength conditioned by prevailing hydraulics (Husband and 

Boxall, 2011). If flow can be associated with a discolouration response, and the discolouration 

therefore predicted in advance, smart alarms facilitating pro-active management of WDS would be 

possible. This could lead to a reduction in operational costs associated with the present re-active 

management strategies adopted by water companies (typically comprising of expensive trunk mains 

cleaning programmes).  

Trunk mains are critical assets that are of particular concern to WSP with regards to discolouration 

risk as they lie upstream of large numbers of customers and may typically only experience low 

conditioning shear stresses, consequently there may be much weakly-bound material adhered to their 

large internal surfaces. Understanding discolouration processes in trunk mains is difficult due to the 

fact that these processes can only be observed directly through disturbing the system which is usually 

undesirable due to potential mobilisation risks (Husband et al., 2010). 

Discolouration in WDS is a highly non-linear multivariate problem where various factors such as 

hydraulic condition, water quality, pipe material and age need to be considered (Husband and Boxall, 

2011; Machell and Boxall, 2014). Therefore, empirical and hydraulic models developed for predicting 

discolouration are often unable to describe such a complex system and are not applicable for WDS 

with different network characteristics. Data-driven models such as Artificial Neural Networks (ANN), 

as an alternative to hydraulic models, may be able to deal with the complex nature of the problem and 

be applied to different system conditions where sufficient data is available to appropriately calibrate 

and validate the model.  

In recent work, data-driven modelling has explored predicting discolouration in WDS (Meyers et 

al., 2017a and 2017b) in which three data-driven approaches (ANN, Random Forests and Support 

Vector Machines) were applied to develop a turbidity forecasting system. The models were developed 

based on two different scenarios: regression-based and classification-based turbidity forecasting. In 

the former, the actual value of turbidity was directly predicted from past values of flow and turbidity, 

while in the latter, the turbidity in the forecast horizon was classified as being above a pre-specified 

threshold. In the application of the models to their data following single filtering, it was shown 

regression-based models could predict turbidity up to 20 minutes ahead, while the classification-based 

models could forecast turbidity for up to 5 hours ahead. It was found that Random Forests based 

turbidity forecast models performed best for this approach but that ANNs also had good turbidity 

forecasting ability. 

It this paper, we investigate the application of ANNs for turbidity prediction, as the main cause of 

discolouration problem in WDS, based on the regression-based models as these models provide more 

useful information compared to the classification-based ones. Moreover, in contrast to the regression-

based model in Meyers et al., 2017a, where only the value of turbidity at n hours later is forecast, our 

aim is to predict the distribution of one future turbidity event (which may exceed several hours) from 

the past flow and turbidity events, i.e. predicting turbidity sequence from the current time to n hours 

ahead (multi-step ahead prediction). For this purpose, an ANN model is constructed based on the 

nonlinear autoregressive exogenous (NARX) network (Lin et al., 1996) which is suitable for time-

series multi-step predictions. Before that, the data needs to be prepared for ANN analysis. Hence, the 

data preparation models, such as event detection models are introduced and applied first to extract the 

required events. In addition, a ‘turbidity event risk’ metric is calculated with two scenarios and 

included as input in the ANN model to capture the effect of temporal distance between the extracted 

events. Prediction performance is tested for two real world cases and compared with and without this 

additional input, and also with the output from a Feed-Forward network. 
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2 Datasets and data preparation models 

In this section, the data preparation techniques will be discussed, and then applied to two different 

data-sets from the centre and north UK, which have been employed in the present study for the ANN 

analysis. These datasets are selected due to their different characteristics.  

The central data is a flow and turbidity time series from a site with a 5.4 km, 500 mm ductile iron 

trunk main that supplied a service reservoir directly from the water treatment works with consistent 

0.1 NTU output and flow control by variable speed pumps. With no take-offs along the length, 

controlled changes in flow were planned and implemented to create low-level discolouration events 

well within UK 4 NTU regulatory values (Husband and Boxall, 2017). The northern data set is from a 

gravity fed 6.4 km, 300 mm partially lined cast iron main with a ferric coagulated upland service 

reservoir source that was part of an operational hydraulic discolouration study (Sunny et al., 2017). 

2.1 Filtering turbidity anomalies 

There are several high frequency spikes in the turbidity time series, especially in the central data 

which are outliers and need to be treated. These are typically associated with reflective properties of 

particles used for measuring turbidity, possible air bubbles or resulting from instrument maintenance 

necessary to clean optics as discolouration material accumulates. These spikes occur in very short 

time periods and without any flow association. As the dataset is very large, manual removal of these 

anomalies is not practical. A searching algorithm based on the gradient of the turbidity time series is 

therefore applied to filter them. Changes in the gradient is computed from a data point to the next, and 

if it is greater than a threshold, the data point is removed, i.e. it will not be considered for next steps of 

analysis. 

2.2 Averaging and smoothing the data 

A simple averaging algorithm is applied to adjust the resolution to a desirable one for ANN 

training. The original flow and turbidity data was logged every 5 and 15 minutes, respectively, in the 

central and northern data. In the current analysis, the resolution of the central data is also resampled 

to   15 minutes by arithmetic averaging. One may use a weighted arithmetic average for this purpose.  

The data still requires smoothing for undesirable noise to be removed. A cubic spline function is 

used here to smooth the time series (Equation 1). The function works based on a weighting kernel   

and a smoothing length   which defines the influence domain of the smoothing (the influence domain 

is twice the smoothing length). 
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where ϒ refers to the influence domain associated to a certain data point over which the data is 

smoothed; t and tʹ refer to the data point at which the smoothing is carried out and its neighbouring 

data points within the influence domain, respectively; q t t h 
= − ; and 1 h = . 

By adjusting the smoothing length, the roughness and trend preservation of the smoothed time 

series can be controlled. Here, it is set to 1.2Δt, i.e. h = 18 minutes. Figure 1 shows a part of the 

central data during an operationally controlled flow event and the resulting turbidity response 

occurring over two days pre- and post-smoothing. 
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Figure 1: The original data (black) and the smoothed data (blue). 

2.3 Turbidity event detection model 

The turbidity events which are sufficiently high for analysis need to be extracted from the data. 

Therefore, an automated system was designed, as described in the following, to find those events in 

the time series.  

Firstly, turbidity peaks higher than a threshold are detected. They are the maximum values of the 

events. Then, the start and end points of the events need to be determined. This is performed based on 

the change in the gradient of the time series in a specified period around the peak of the event. Then 

the ‘base value’ of the event which is ‘the pre-event value of turbidity which starts increasing at the 

beginning of the event and then decreasing again to that value at the end of the event’ is computed 

using the smoothing function with a large smoothing length without taking the detected events into 

account. This value can be used later to calculate the rise in the turbidity as the difference between the 

maximum and base values, i.e. removing the effect of seasonality in the data. Finally, the detected 

turbidity events, i.e. their maximum, start and end points are updated according to the calculated base 

line. Figure 2 shows two examples of turbidity event detection in the data of Central (a) and Northern 

(b). 

 

Figure 2: Turbidity event detection examples: (a) Central, (b) Northern. 

2.4 Flow event detection model 

Once turbidity events are detected, flow events associated with them are also detected by 

searching over a certain period of time (several hours here) previous to each detected turbidity event. 

Firstly, the flow peak in that period is located. Then, from there, the change in the flow in both 

directions is investigated within a time window based on the gradient of the time series. The flow 

variations need to follow certain conditions to be considered as a flow event. If not, no flow event is 

detected and therefore the associated turbidity event is also removed based on the assumption that 

there must have been no flow association at that particular turbidity event so that it will not be used in 

the ANN analysis.   

Then, the ‘base value’ for flow events are calculated by averaging past flow values over a short 

period of time. The rise in the flow can then be calculated as the difference between the peak and base 

values. Figure 3 shows an example of detected flow events and associated turbidity events. 
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Figure 3: An example of detected flow events with their associated turbidity events. (Data: Northern). 

The turbidity and flow event detection systems have several coefficients and constants that define 

which and what type of events are to be detected; for example, high or low events (based on a 

threshold), or the events with steeper or milder profile gradients. 

3 ANN analysis 

The aim of this section is to predict a future turbidity event using the past events of flow and 

turbidity. In this analysis, the target is turbidity and the input is flow, as the turbidity events are 

regarded to be flow associated.  

Detected events are extracted and used for constructing input and target matrices. However, the 

effect of temporal distance between the events is missing while it can have an important effect on a 

future event. For instance, if there has been a long period with no turbidity event, the risk of the 

occurrence of a new turbidity event is higher compared with when there has just been a recent 

significant event. Hence, an extra input, namely, the turbidity event risk parameter (Ep) is introduced 

to resolve this deficiency. Two scenarios are explored for the determination of this parameter, as now 

described in the following. 

3.1 Determination of the turbidity event risk 

Scenario #1 

It is assumed that 1) material deposits continually on the pipe wall, and releases from it suddenly 

during an event; and that 2) the total build up and release volumes (over a certain time period) are 

equal. Based on the first assumption, the risk of an event increases gradually with a certain slope, 

which is defined here as ‘deposition per time step (md)’. This drops suddenly at the occurrence of a 

turbidity event. According to the second assumption, md is equal to total area below turbidity events in 

the time series (red lines in Figure 4, see Figure 2 for better visibility) divided by the total time period. 

Therefore, the following equation is used to estimate the turbidity event risk Ep. 

p p d t tt t t
E E m t R t

−
= +  −     (2) 

where t and t-Δt denote the time step (data point) where Ep is calculated, and its previous time step, 

respectively; Δt is the time interval size; Rt is the increase in the turbidity volume from the base value 

at time t (during an event); and δt is equal to one if the data point at time t is within a turbidity event, 

and is equal to zero, if it is not. The second term on the right-hand side of the equation describes the 

gradual increase in the Ep profile with the slope of md, while the third term introduces the sudden 

reduction during an event. Figure 4 (b) shows the distribution of Ep calculated by Equation (2) for the 
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central data, shifted up as to have no negative values and then normalised between 0 and 1. An initial 

value is required for Ep. However, it is not easy to set that value due to the lack of knowledge on the 

condition of the main before the data was measured. Here, it was initially set to zero, which led to a 

value greater than zero after applying the shift in the Ep profile. 

A limitation with this technique is the difficulty in the estimation of md, which is a site-specific 

parameter. Based on the current calculation, md is estimated as the total area below the detected 

turbidity events in the time series divided by the total time period. Therefore, the number of events 

included in the calculation or the time period over which the calculation is carried out, influences the 

magnitude of md. In other words, using different numbers of events, or different time periods in the 

analysis, gives different values for md. Hence, scenario #2 is also introduced as an alternative for the 

estimation of Ep. 

Scenario #2 

Here, the turbidity event risk parameter Ep is estimated locally, based on the average of a few past 

events in the time series, so that there will be no need for an extra parameter like md. To estimate Ep at 

time t, an imaginary event which is a weighted average of a few past events is set at a certain temporal 

distance to the current time t, and then Ep is estimated as the temporal distance divided by the 

magnitude of the imaginary event, as follows in Equation (3). 
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where HEM and LEM are the magnitude of the imaginary event and the temporal distance between t and 

that event, respectively. HEi and LEi are the magnitude of the past events (i = 1,2,…,N) that are used to 

estimate the imaginary event, and the temporal distance between t and those event, respectively. i 

denotes the past events used for this calculation and N is the total number of them. 

According to this equation, when the temporal distance to past events is longer or the magnitudes 

of the past events are lower, the risk of a new event is higher, and vice versa. In fact, the effect of 

several past events is captured with a higher impact from the larger events. N = 1 means that the risk 

of a new event at time t is affected by only the past event, right before t. However, more than one 

event usually affects the risk of a new event. An example is when there is a small event in a certain 

temporal distance to time t and there is also a large event just before the small event. In this situation, 

considering only the small event in the estimation of Ep leads to a high risk, while the risk is not 

actually high due to the larger event. The choice of N depends on the data. Figure 4 (c) shows the 

estimated Ep for the central data, by using N = 4 and the initial value of zero, normalised between 0 

and 1. It can be seen that both scenarios provide relatively similar profiles of Ep, while scenario #2 is 

simpler and also more robust with regards to the independence to md. 

 

Figure 4: Turbidity event risk Ep. a) Turbidity time series (black) and detected events (red); b) Ep (hr.NTU) 

estimated by scenario #1; and c) Ep (hr/NTU) estimated by scenario #2. 
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3.2 NARX: results and discussion 

A multi-step prediction ANN model is constructed based on the NARX network in MATLAB. At 

a certain time, the turbidity is predicted several time-steps ahead (forecast horizon) using the values of 

flow, Ep and turbidity in the past events. First, an open-loop version of the NARX network is used to 

train the model, then the network is closed and applied for turbidity prediction. One hidden layer with 

the size of 10 is employed and the input and feedback delays are set to 3 (derived empirically). 

The inputs are the detected flow events as well as Ep at the beginning of the turbidity events; and 

the target is the turbidity events. note that that the difference between the magnitude of flow/turbidity 

during an event and the base value of that event, i.e. flow/turbidity rise during an event, is considered 

rather than the absolute values of flow and turbidity, in order to remove the effect of data seasonality. 

Figure 5 represents the results of the model in comparison with the measured data for the central 

and northern cases (Figures 5 (a) and (b), respectively) for the prediction of a future event (forecast 

horizon of about 7-10 hrs) using 10 past events, with using Ep as input based on scenarios #1 and #2. 

The result without using Ep is also presented for comparison. According to the figure, including Ep 

enhances the predictions. In the results related to the central data, the Normalised Mean Square Error 

(NMSE) of the closed-loop training for the cases without using Ep, scenario #1, and scenario #2 are 

0.15, 0.115 and 0.056, respectively; and the Mean Absolute Error (MAE) of the predicted event is 

0.107, 0.057, and 0.042, respectively. For the northern case, the NMSE of the NARX training for the 

cases without using Ep, and scenarios #1 and #2 are 0.035, 0.061 and 0.058, respectively; and the 

MAE of the predicted event is 0.028, 0.026, and 0.016, respectively. The performance of the model in 

the analysis of the northern data seems more accurate with lower errors. This can be explained by this 

data being more uniform with less variation in the size of the events compared to the central data. 

It is noted that the inclusion of Ep in the inputs does not necessarily lead to more accurate 

prediction for all events in the data. For instance, in Figure 6 (a), the result of the model for another 

part of the northern data (to predict a different event) without using Ep is presented and compared 

with the results of the model when scenarios #1 and #2 are used to estimate Ep. As can be seen, the 

inclusion of Ep leads to an overestimation of this particular event. The reason may be related to the 

probable overestimation of the calculated Ep at that particular event as shown in Figure 6 (b). 

According to the figure, the estimated Ep at the beginning of the predicted event with both scenarios 

#1 and #2 is about 0.86 (marked with circles on the profiles) which is a relatively high risk, while the 

event is relatively small. This means that it is not always possible to have a precise estimation of the 

risk of all turbidity events in the time series. 

 

Figure 5: Prediction of a future event using 10 past events, without using Ep and with scenarios #1 and #2 for the 

a) central and b) northern cases. 
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Figure 6: A part of the northern data: a) prediction of a future event without using Ep, and with using it based on 

scenarios #1and #2; and b) the predicted event shown in the turbidity time series and Ep calculated using 

scenarios #1 and #2. 

3.3 NARX network vs. Feed-Forward network 

In this section, the analysis of the northern data (presented in Figure 5 (b), scenario #2) is repeated 

with a Feed-Forward ANN network in order to assess the performance of the NARX model in 

comparison with the Feed-Forward network for the present case study. The result is shown in Figure 

7. The NMSE of the trained data (past events) is 0.559 and 0.058 for the Feed-Forward and NARX 

analysis, respectively; and the MAE of the future (predicted) event is estimated as 0.04 and 0.016 

NTU, respectively. Figure 8 presents train and test regressions of these two ANN models with an R 

value of about 0.66 for the Feed-Forward analysis and 0.97 for the NARX model. This information 

reveals that the NARX network significantly outperforms the Feed-Forward network for this type of 

multi-step ahead prediction. 

 

Figure 7 Result of a Feed-Forward network (left) and NARX network (right) analysis for a part of the northern 

data. 
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Figure 8 Regressions of train and test of the data with a) Feed-Forward network and b) NARX network. 

4 Further work 

In future work, the developed models will be trained, calibrated and validated using a larger 

number of datasets (incorporating many more events with different characteristics), to examine the 

trade-offs of data availability, variability, accuracy and generalisation. The model includes a flow 

warning system that could be useful for practical applications. The warning system detects if a 

considerable change takes place in the flow. At that specific time, the trained model can be applied to 

forecast a potential future turbidity event and whether it exceeds a particular threshold. In addition, 

the model is not computational demanding hence ideal as a real time smart alarm system, i.e. can run 

updated series at regular intervals to estimate a new alert for exceedance thresholds. 

5 Conclusions 

The data preparation models were introduced to tailor the data for ANN analysis. The presented 

automated turbidity and flow event detection models extracted the required events for ANN training. 

Then, the NARX network was employed to develop a time series prediction model for predicting one 

future event from the past detected events. Due to the discontinuity in the extracted events, an extra 

input, Ep, was introduced to capture the effect of temporal distance between the events. Key 

conclusions are summarised as follows; 

• The estimated errors (NMSE and MAE) show that the NARX model combined with the 

models developed for data preparation provides a good fitting to the detected events.  

• Including Ep as an input leads to not only avoidance of incorrect mathematical 

representation of the physical problem, but also an enhancement in the predictions.  
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• Both scenarios introduced for Ep estimation perform very similarly. However, scenario 

#2 is more robust and easily implemented, though estimation of the risk of a turbidity 

event is still challenging due to the complexity of the problem, resulting in inaccurate 

predictions of some events.  

• The NARX network performs significantly better than the Feed-Forward network for the 

present problem. 

• The present model provides the (multi-step ahead) distribution of a future turbidity event 

rather than a single value (e.g. maximum or mean of an event) or a classification of the 

event. An advantage of the model is that it is capable of predicting the distribution of one 

future event with a period of several hours (7 to 10 hours in the present analysis) and 

could be used to predict several future events if there is a sufficient number of various 

events available for training. 
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