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Abstract
Theory instantiation tackles the problem of theory reasoning with quantifiers in Vam-

pire using an SMT solver. In contrast to AVATAR modulo theories it works locally by
instantiating a clause such that its pure theory part becomes inconsistent and can be
deleted. We report on the challenges when adding instantiation for the theory of arrays.

1 Introduction
Although it is admissible the theory instantiation rule has shown to be helpful for problems that
combine (nonlinear) arithmetic and reasoning with uninterpreted functions[13]. Since arrays
roughly correspond to the lambda-free fragment of higher-order logic with pointwise function
updates, better reasoning over arrays could be a useful alternative to full higher-order reasoning.
In this paper we investigate some of the challenges that theory instantiation for arrays poses
and explore possible approaches.

2 Background

2.1 First Order Logic
We assume a multi-sorted polymorphic first order logic with equality. Lower case greek letters
(α, β, γ, µ, ν) denote type variables, sorts are denoted by upper case latin words (Bool, Int).
Type application is written as α � β. To stress the similarity of arrays to functions we denote
an array sort with index sort α and range sort β as [α 7→ β]. The symbols for universal and
existential type quantification are Π and Σ.

Terms are annotated by types in subscript (pInt�Bool) unless the type is clear from the
context. Like in higher-order logic, predicates are just constants of type α1 � . . . � αn � Bool,
and functions are constants with non-basic type.

The lower case letters a, b denote array variables, i, j variable indices of arrays and x, y stand
for variables of arbitrary type. Constant terms are denoted by lower case letters c, . . . , r and
by select, store, const,S,K.

2.2 Considered theories
Since the TPTP format does not yet include arrays we use SMT-LIB as input format. We follow
the the SMT-LIB definitions of theories according to version 2.6 of the specification[2]. The
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theories relevant for this paper are the basic logic (Core), the theory of integers (IA), extensional
arrays (A), and uninterpreted function(UF). The corresponding SMT-LIB logics are AUFLIA
and AUFNIA where L and N denote the linear and non-linear fragments of integer arithmetic.
The theory of reals can also be included but we expect theory instantiation for real valued
arrays to be even harder than for integer valued arrays.

2.2.1 The Theories Core and Integer

The core theory common to all logics provides the basic logic operators including equality,
distinctness of multiple terms and the if-then-else conditional. In particular the conditional is
useful for the encoding of arrays and has special treatment in Vampire[10]. We also consider the
Integer theory because theory instantiation requires interpreted constants and number theory
is a likely source of problems.

2.2.2 The theory of arrays

Arrays as introduced by McCarthy[11] are axiomatized with two functions where select repre-
sents reading from the array and store represents writing a single value. Their interaction is
distinguished by two cases. First, reading from an index that has just been updated re-obtains
the value stored. Second, reading an index of an array that has been updated at an inde-
pendent position can disregard that update. The third axiom, extensionality, considers arrays
equal when they agree pointwise. Table 1 shows the exact formulations of the axioms used in
Vampire.

Besides for Vampire itself, the theory is implemented by multiple SMT solvers with CVC4[1],
Z3[8], VeriT[6], Alt-Ergo[7], SMTInterpol[9] and UltimateEliminator[3] competing in the AU-
FLIA category in SMT-COMP 20191.

Last update Παβ ∀a[α7→β]iαxβ . select(store(a, i, x), i) = x
Previous update Παβ ∀a[α7→β]iαjαxβ . i 6= j → select(store(a, i, x), j) = select(a, j)
Ext. Παβ ∀a[α7→β]b[α7→β]iαjα . select(a, i) = select(b, i)→ a = b

Table 1: McCarthy’s array axioms

2.3 Theory Instantiation
Theory instantiation[13] introduces a new inference rule that uses the theory part of a clause
to instantiate it. The idea is that an instantiation that conflicts with the the theory part
is sufficiently precise to be useful for proof search on the uninterpreted part. Moreover, the
quantifier-free theory reasoning with uninterpreted functions is a fragment where SMT solvers
are strong. It is natural to use an SMT solver to find the instantiation then.

Definition 1. A constant is pure if it has a fixed interpretation. A term is pure if it contains
only of variables or pure constants.

Definition 2. Let C be a clause and D a subclause of C. We call D a set of trivial literals if
the following conditions hold for each l ∈ D:

• l is of the form x 6= t

1https://smt-comp.github.io/2019/results/auflia-single-query
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• l is pure

• if x occurs in a non-trivial literal l′ ∈ C \D then l′ is not pure

A literal in C is non-trivial if it is not element of the set of trivial literals in C.

A clause may have multiple sets of trivial literals. Consider the clause x 6= y + z ∨ y 6=
3 · x∨ z = f(0). The last literal connot be trivial because it contains an uninterpreted function
and is not pure. But due to the third rule x 6= y + z is trivial if and only if y 6= 3 · x is trivial.
Therefore either the whole clause is non-trivial or just z = f(0). We usually consider the largest
set of trivial literals in a clause.

Definition 3. Let P ∨D is a clause where the literals of the sub-clause P are pure and non-
trivial. Furthermore, let θ be a substitution such that Pθ is unsatisfiable. Then the theory
instantiation inference is defined as

P ∨D
Dθ

theory instance

We use an SMT solver to find a suitable instance. For this we choose a candidate P in a
clause that is pure and non-trivial. After negating and skolemizing P it can be passed to the
SMT solver. If the solver produces a model and the terms can be translated back to terms, the
assignments of variables to model terms of their skolem constant produce the instantiation.

3 Observations about the theory of arrays
Although Vampire supports arrays via the axiomatization it can not solve the conjecture
∃a[Int7→Int]a[Int7→Int] . a 6= b that there are two different arrays with integer indices and val-
ues. Although relatively simple, the problem is not trivial: the formula would not be valid for
arrays with indices and values of a singleton type. A proof must therefore show the existence
of two integers first and then lift this result to the difference of two arrays each containing one
of these integers at the same index via (the contrapositive of) extensionality.

Interestingly enough, no SMT solver currently solves this problem either. On the other
hand, theory instantiation would try to find a model for the inequality ska 6= skb which is easily
found by an SMT solver. This could be an indication that theory instantiation is helpful for
proof search.

3.1 The relationship to Higher-Order logic
We can see arrays as an incomplete first-order encodings of functions. The select function di-
rectly encodes as application λaλi(a i) and store encodes a pointwise update as λaλiλvλx(ifx =
i then v else a x). The select axiom directly is a tautology in lambda calculus: its encoding is
the term (λx(ifx = i then v else a x) v) = i which normalizes to v = v after beta reduction
and evaluation of the conditional. Similarly, the store axiom translates to i 6= j → λx(ifx =
i then v else a x) v = a j which is also a tautology.

For a complete encoding we could add the array versions of the S and K combinators of
combinatory logic (see Table 2). In a polymorphic setting this axiomatization is finite but a
complete set of monomorphized combinators would need to include an infinite set of ground
types. Adding these operators requires significant changes in the reasoning process which go
far beyond the goals of theory instantiation[4, 5]. Nevertheless some interesting problems can
be solved in this fragment of higher-order logic.
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Const Παβ ∀a[α7→β]iαxβ . select(const(x), i) = x
K Παβ ∃ K[α7→[β 7→α]]∀xαyβ . select(select(K,x), y) = x
S Παβγ ∃Sξ ∀xνyµzα .

select(select(select(S, x), y), z) = select(select(x, z), select(y, z))
with µ = [α 7→ β] and ν = [α 7→ µ] and ξ = [ν 7→ [µ 7→ [α 7→ γ]]]

Table 2: Arrays for combinatory logic

3.2 Existence of basic arrays
Since the theory of arrays essentially formalizes finite sequences of stores the existence of rela-
tively simple arrays requires a little attention. For example, if we could claim the existence of
a constant array of zeroes as

∃a[Int7→Int]∀iIntselect(a, i) = 0

which becomes select(a, sk(a)) 6= 0 after CNF transformation.
Suprisingly this formula has a counter-model. In general, due to compactness there must

be models that do not contain the (uncountable) function space from integers to integers.
We might expect that certain arrays are always contained in a model of the theory of arrays
but the following construction can be applied to show that any array array that is entirely
know could be missing. Consider a domain for the array sort that contains a constant c1
such that ν(select)(c1, x) = 1 for all integers x. Then the array axioms enforce the addition
of a representative for all arrays after updating a at k positions. But a set of the smallest
cardinality closed under the axioms does not contain the array that is zero on all positions: any
representative of the set has only finitely many possible updates and therefore contains at least
one index that still contains zero.

In case of theory instantiation, the models always contain concrete theory values from the
index and value type. Then we can replace the constant axiom by an array that is only constant
on finitely many indices and may be arbitrary on all other indices. We first create a shortcut
notation to represent storing of n terms into an array:

Definition 4. Let t1, . . . , tn be a finite, non-empty list of terms. Then we define a partially
constant function pconst[tn,...,t1](x) that sets x on those terms to zero:

pconst[tn,...,t1](x)

{
store(x, t1, 0) if n = 1
store(pconst[tn−1,...,t1](x), tn, 0) if n > 1

Now we use Herbrand’s theorem and use the finitely many instances of the constant axiom
to define our pconst[] term.

Lemma 1. Let p be a ground resolution refutation of the clause set select(const, i) = 0∨TA∨C
where const does neither occur in C nor in any grounding substitution for select(const, i) = 0.
Then p can be transformed into a proof of C that does not contain const.

Proof. Since p is ground there are finitely many instances t1, . . . , tn. We then denote by φ(C)
the replacement of const by store(. . . store(x, t1, 0), tn, 0) in the clause C. We now inductively
construct a new proof from the structure of p such that the conclusion of each sub-proof infering
C now infers φ(C):

• Axiom select(const, ti) = 0 (for 1 ≤ i ≤ n): we infer select(pconst[tn,...,t1](x), ti) = 0 as a
derivation:
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– select(store(x, ti, 0), ti) is an instance of the store axiom for any x

– select(pconst[tn,...,t1](x), ti) reduces to select(pconst[tn−1,...,t1](x), ti) for n > i:

1 select(store(a, i, v), j) = v ∨ i 6= j implies theory axiom
2 select(store(a, i, v), j) = select(a, j) ∨ i = j theory axiom
3 0 = select(pconst[tn−1,...,t1], ti) recursion to n− 1

4 0 6= select(store(pconst[tn−1,...,t1], tn, 0), ti)∨
0 = select(store(pconst[tn−1,...,t1], tn, 0), ti) tautology

5 select(store(pconst[tn−1,...,t1], x, v), ti) = 0 ∨ x = ti superposition 3,2
6 select(store(pconst[tn−1,...,t1], tn, 0), ti) = 0 ∨ tn = ti instantiate 5
7 select(store(pconst[tn−1,...,t1], tn, 0), ti) = 0∨

select(store(a, tn, v), ti) = v resolution 1,6
8 select(store(pconst[tn−1,...,t1], tn, 0), ti) = 0 factoring 7

• Axiom: replace C by φ(C)

• Factoring / (Equality) Resolution / Superposition with conclusionD and premise(s) C1, C2:
assume we have constructed the premises as φ(C1), φ(C2) then we can infer φ(D) because
the expansion of const happened uniformly such that the unification of the active literals
in the premises is still possible.

Since t1, . . . , tn do not contain const the symbol has been eliminated from the proof.

To illustrate why this theorem does not obtain a general method for eliminating constant
arrays let us assume the constant array axiom and prove that there exists a constant array.
After skolemization we end up with a single Herbrand disjunct select(const, sk(const)) = 0 →
select(const, sk(const)) = 0. If we ignored the acyclicity condition, we would define const as
store(const, sk(const), 0). But obviously unfolding this defintion is not well founded because
terms are finite.

3.3 Theory Instantiation of arrays

The assumption behind using a model generated by an SMT solver for instantiation is that this
model can be translated back to the term level. In case of integer arithmetic this is straight-
forward: every model constant is assigned a number that directly translates to a numeral. For
example, instantiating x2 6= 81 ∨ P (x) generates the SMT problem sk2

x = 81 with the model
skx 7→ 9 which corresponds to the instantiation x 7→ 9. The case of arrays is a little more
intricate: SMT models are usually ground and a model for an array variable is a sequence of
stores. At some point the sequence of stores needs a basic array to start. For example CVC4
and Z3 use a constant array when we produce a model for a 6= b where a, b are constants of type
[Int 7→ Int]. In both cases this model is a = const, b = store(const, 0, 1). Replacing const by
an arbitrary array does not work but we see that no index contains const. Thus we can apply
Lemma 1 to replace const by store(a, 0, 0) where a is a fresh variable.

3.4 Lambda terms as models

Experiments with Boolector indicate that a representation of arrays in lambda calculus are often
beneficial[12]. According to the SMT-LIB specification[2, p. 65], models may contain abstract
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values via the (as term type) construct. Z3 for example makes use of this construction and
sometimes reports arrays as lambda functions.

The patterns we have observed so far are const(c) = λx c and store(a, i, v) = λx(ifx =
i then v else a x) which are translations of the corresponding axioms. The term merge(a, b, i) =
λx(ifx ≤ i then a x else b x) represents a copy of array a up to index i and it is a copy of
b from that index onward. We can add it it as the axiom select(merge(a, b, i), x) = ifx ≤
i then a x else b x after applying x on both sides via the congruence rule.

To translate a nested lambda term back to the store notation, it needs to be beta-expanded
first. For example a model for the constant array a containing -1 that has been updated with
23 on index 1 and 42 on index 2 undergoes the following transformation:

a = λx(ifx = 1 then 23 else (ifx = 2 then 42 else − 1)) =
λx(ifx = 1 then 23 else ((λy(ifx = 2 then 42 else (λz.− 1) y)) )) =
store(λy(ifx = 2 then 42 else (λz.− 1) y), 1, 23) =
store(store(λz.− 1, 2, 42), 1, 23) =
store(store(const(−1), 2, 42), 1, 23)

3.5 Array combinators

Apart from using full combinatory logic, a possible way to deal with syntesizing of infinite valued
arrays is to add arithmetic combinators for arrays. For example we could add the axioms

id select(id, x) = x
const(k) select(const(k), x) = k
sum(a, k) select(sum(a, k), x) = select(a, x) + k
mul(a, k) select(sum(a, k), x) = select(a, x) ∗ k

then we could create a witness for ∃a[Int7→Int]∀i select(a, i) < select(a, i+1)∧select(a, 0) = 23
with the term sum(id, k). Our experiments so far have not been fruitful yet.

4 Implementation

In the meantime, array instantiation has been implemented with Z3 as SMT solver. Both kinds
of models are translated to terms containing the constant array and the merge operator. Since
the extension of the original theory with the axioms for const and merge is not conservative,
these axioms need to be enabled seperately. Table 3 describe the new options. Vampire must
be compiled with Z3 support for the options to work.

-thia off no array instantiation
store translate only store terms
lambda also translate lambda terms to store
lambda_merge translate lambda to store and merge

-exarr off no extra axioms
const add const
all add const and merge

Table 3: New options to Vampire (defaults are bold)
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5 Conclusion

First experiments with array instantiation solve the problems we have set out for but some
mathematically problems still stay out of reach. For example, sorting an array could be stated
as claiming that there is a renaming the indices such that the array with renamed indices is
sorted:

∀a[Int7→Int]∃ren[Int7→Int]bijective(ren)∧
∀iInt . select(a, select(ren, i)) < select(a, select(ren, i+ 1))

Unfortunately it is unlikely to prove this theorem without invoking the axiom of choice. We
could be more modest and restrict our interest in finite intervals of indices. Unfortunately, even
when we neglect the bijectivity property we would end up with a clause like ska < 0 ∨ ska >
10 ∨ select(a, select(ren, ska)) < select(a, select(ren, ska + 1)). Abstraction of ska would let
us instantiate the monotonicity condition but equating a skolem constant with a numeral is
unlikely to succeed.

Another approach would relax the conditions for instantiation. Currently, we do not allow
uninterpreted constants in the instantiated sub-clause because we skolemize a second time
before we pass it to the SMT solver. To obtain a model that is general enough we would need
to de-skolemize the uninterpreted constant. But then the assertions would contain universally
quantified variables that are hard for the SMT solver to instantiate. There is an exception
though: CVC4 detects bounded cases like the one above and enumerates the interval. There,
CVC4 would actually find a suitable model.

There are also open questions concerning which clauses are selected for instantiation. During
our experiments we have encountered cases like x < 0 ∨ p(x) which was subsequently instan-
tiatiated with x 7→ 1, x 7→ 2, . . . with little chance to contribute to the refutation. Another
problematic pattern is that many SMT-LIB problems have some lifting axioms of the form
∀a[Int7→Int] . f(a) < g(a) where f and g seem to encode very generic functions coming from
program verification. Without further context an instantiation of such an axiom is also unlikely
to contribute to a proof. We would like to detect these situations and avoid theory instantiation
in these cases.
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