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Abstract

We present Probabilistic Doxastic Temporal (PDT) Logic for streams, a formalism to reason about probabilistic
beliefs and their infinite temporal evolution in multi-agent systems. Extending previous work on PDT Logic, this
formalism builds on a Markov chain model to represent infinite streams of possible worlds. Within these streams, it
enables the quantification of beliefs through probability intervals as well as the representation of temporal relations
and epistemic actions. We show how agents can update their beliefs with respect to their observations, provide a
model for infinite streams of possible worlds and show how we can map clippings of these streams to finite time
windows. Based on these time windows, we introduce an adoption of the semantics of PDT Logic for finite time
frames, and show how this provides a means to overcome the limitation of finite time domains.

1 Introduction
Epistemic and doxastic logics are used to reason about agents’ knowledge. Formalizing the analysis of
knowledge and belief through such logics has been an active topic of research in diverse fields such as
philosophy [14], economics [2], game theory [11], and computer science [9]. Numerous extensions to
modal epistemic logic have been made to reason about knowledge in multi-agent settings [9], [3], to add
probabilistic knowledge [8], [5], and to analyze the dynamic evolution of knowledge [7].

In realistic scenarios an agent usually has only incomplete and inaccurate information about the
actual state of the world, and thus considers several different situations as actually being possible. As it
receives new information (e.g., it observes some facts), it has to update its beliefs about these possible
worlds such that they are consistent with the new information. These updates can for example result in
regarding some worlds as impossible, or judging some worlds to be more likely than before. Thus, in
addition to analyzing the set of worlds an agent believes to be possible, it is also expedient to quantify
these beliefs in terms of probabilities. This provides means to specify fine-grained distinctions between
the range of worlds that an agent considers possible but highly unlikely, and worlds that seem to be
almost certainly the actual world.

When multiple agents are involved in such a setting, an agent may not only have varying beliefs
regarding the facts of the actual world, but also regarding the beliefs of other agents. In many scenarios,
the actions of one agent will not only depend on its belief in facts of the actual world, but also on its
beliefs in some other agent’s beliefs.

Furthermore, an agent is usually also interested in temporal relationships and therefore also main-
tains beliefs about both the temporal evolution of the world as well as the temporal evolution of other
agents’ beliefs. To illustrate how reasoning about other agents beliefs can yield significant advantages
in practical scenarios, we start with the following informal description of an example from the cyber
security domain:

Example 1 (Cyber security). Suppose that an adversary is trying to break into a computer system. This
is usually done by using an attack graph to detect and exploit potential vulnerabilities of the system. An
attack graph specifies a set of paths (i.e., sequences of actions) to carry out an attack. Several paths
of the attack graph might be used in parallel, potentially by different agents (for instance, a number of
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infected computers controlled by a botnet). Usually, attack patterns specified by one attack graph are
used multiple times, which has two important ramifications: the adversary will learn from experience
which of the paths yield a high probability of successfully breaking into a system. Defenders in turn
will be able to gain knowledge of the attack graph through the repeated observation of certain patterns.
Thus, when a system is under attack, the defender will have beliefs about both the chosen attack paths
and the adversary’s belief regarding the success of the respective path. Thus, the defender can chose
countermeasures effectively by reacting only on paths where these nested beliefs are high and which
indeed pose a threat according the system’s mission impact model.

To formalize reasoning about such beliefs, we have developed Probabilistic Doxastic Temporal
(PDT) Logic [17], which enables the representation of and reasoning about dynamically changing quan-
tified temporal multi-agent beliefs through probability intervals. While it facilitates the expression of
rich temporal relations, it is limited to finite time frames. The main contribution of this paper is an
extension of our previous work to allow for models with an infinite evolution of time while maintain-
ing the temporal expressivity of PDT Logic. Thus, we provide a means to integrate established stream
reasoning systems (e.g., the well-known linear road benchmark [1]) and probabilistic multi-agent be-
lief operators into a coherent framework. To illustrate the merit of this extension, consider the above
example again: PDT Logic already provides means to formalize the above example, but it would re-
quire frequent re-initializations because the formalism is limited to finite time frames. Using the stream
extension presented in this paper instead allows for a continuing analysis of current threads.

The remainder of this work is structured as follows: first, we start with a discussion of related work
in the next section. Next, after summarizing the syntax in section 3, we define the formal semantics of
PDT Logic for streams in Section 4. Then, we discuss an example in Section 5 and, finally, conclude
the paper with Section 6.

2 Related Work
Approaches to formalize reasoning about knowledge and belief date back to Hintikka’s work on epis-
temic logic [14]. Classical forms of epistemic logic do not allow for a quantification of an agent’s degree
of belief in certain facts; it can only be specified whether an agent does or does not know (resp. believe)
some fact. To remove this limitation, combinations of logic and probability [6] resulted in numerous
logics of knowledge and belief with probabilistic quantifications: [8] and [28] define a belief operator
to quantify lower bounds on the probabilities that an agent assigns to a formula. Evaluation of these
probabilities is done by evaluating this formula in every state the agent considers possible. [18] intro-
duces Probabilistic Epistemic Logic and uses a similar belief operator to express lower bounds on the
probabilities, but evaluates the probabilities by representing models as Bayesian networks.

To reason about dynamically changing knowledge and belief, extensions to epistemic and doxastic
logics have been proposed, e.g. [23] (building on the situation calculus from [20]), [12], and [26]. In
these works only the single-agent case is considered, and therefore they do not provide for representa-
tions of nested beliefs. Multi-agent extensions to these approaches can be found for example in [13], [4],
[10], [27], and [7]. A common limitation of these works is that they are only able to reason about step-
by-step changes. Explicit representation of and reasoning about time is difficult in these frameworks due
to the lack of an explicit notion of time. [21] and [22] alleviate these limitations by combining Dynamic
Epistemic Logic [7] with temporal modalities.

[24] and [25] introduce APT Logic, a framework to represent probabilistic temporal evolutions of
worlds in finite-length threads. APT Logic assigns prior probabilities to every thread and uses these
probabilities to determine probabilities of events occurring in specific threads. To represent temporal
relationships between events, APT Logic introduces the concept of frequency functions. APT Logic by
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itself does not provide any formalization of knowledge or belief. However, it provides a foundation to
integrate probabilistic temporal reasoning into PDT Logic [17], our doxastic multi-agent framework that
can explicitly reason about temporal relationships through temporal rules by an adoption of frequency
functions.

3 PDT Logic programs: Syntax
In this section, we summarize the syntax of PDT Logic programs.

We assume the existence of a first order logic language with finite sets of constant symbols Lcons,
predicate symbols Lpred, and an infinite set of variable symbols Lvar. Every predicate symbol p ∈
Lpred has an arity. A term is any member of the set Lcons ∪ Lvar. A term is called a ground term if
it is a member of Lcons. If t1, .., tk are (ground) terms, and p is a predicate symbol in Lpred with arity
n, then p(t1, ..., tk) with k ∈ {0, ..., n} is a (ground) atom. If a is a (ground) atom, then a and ¬a are
(ground) positive resp. negative literals. The set of all ground literals is denoted by Llit. As usual, B
denotes the Herbrand Base of L, i.e., the set of all ground atoms that can be formed with predicates from
Lpred and terms from Lcons.

Time is modeled in discrete steps. The set of time points is denoted by T and ranges over the set
of natural numbers. Consequently, deviating from our previous work on PDT Logic [17], the temporal
evolution of worlds is not limited to a finite time frame anymore.

The arbitrarily large, but finite set of agents is denoted by A, and the number of agents (|A|) is
denoted by n. To describe what agents observe, we define observation atoms as follows:

Definition 1 (Observation atoms). For a group of agents G ⊆ A and a ground literal l ∈ Llit, ObsG(l)
is an observation atom. Lobs denotes the set of all observation atoms.

Intuitively, the meaning of a statement of the formObsG(l) is that all agents in groupG observe that
fact l holds. Note that l may be a negative literal and therefore we can explicitly model observations of
negative facts (such as “it is not raining”). We assume that the agents in G not only observe that l holds,
but that each agent in G is also aware that all other agents in G make the same observation. To describe
observations at specific time points, we use time-stamped observation atoms of the form [ObsG(l) : t],
specifying that observation ObsG(l) occurs at time t.

Definition 2 (Formulae). Both atoms and observation atoms are formulae. If F and G are formulae,
then F ∧G, F ∨G, and ¬F are formulae. A formula is ground if all atoms of the formula are ground.

To express temporal relationships between formulae, we define temporal rules following the ap-
proach of APT rules from [24].

Definition 3 (Temporal rules). Let F,G be two formulae, ∆t a time interval, and fr a frequency function
(describing temporal patterns, as defined in [24]). Then rfr∆t(F,G) is called a temporal rule.

The meaning of such an expression is to be understood as “F is followed by G in ∆t time units
w.r.t. the frequency function fr”. For a given set of temporal rules R, we refer to ∆tmax

as the largest
time interval used inR.

Now, we can define the belief operator B`uit′ to express agents’ beliefs. Intuitively, B`uit′(·) means that
at time t′, agent i believes that some fact (·) is true with a probability p ∈ [`, u]. We call the probability
interval [`, u] the quantification of agent i’s belief. We use Ft to denote that formula F holds at time t.

Definition 4 (Belief formulae). Let i be an agent, t′ a time point, and [`, u] ⊆ [0, 1]. Then, belief
formulae (bf) are inductively defined as follows:
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• If F is a formula and t is a time point, then B`uit′(Ft) is a bf.

• If rfr∆t(F,G) is a temporal rule, then B`uit′(r
fr
∆t(F,G)) is a bf.

• If F and G are bf, then so are B`uit′(F ), F ∧G, F ∨G, and ¬F .

4 Semantics
In this section, we will provide the formal semantics for stream reasoning in PDT Logic. This semantics
is an expansion of the semantics introduced in our previous work [17], such that it enables reasoning
about infinite temporal evolutions.

4.1 Possible Worlds
We start with the definition of worlds (or states in the terminology of [9]). A world ω consists of a set
of ground atoms and a set of observation atoms that hold in ω. With a slight abuse of notation, we use
a ∈ ω and ObsG(l) ∈ ω to denote that an atom a (resp. observation atom ObsG(l)) holds in world ω.
Since agents can only observe facts that actually hold in the respective world, we say that a world ω is
consistent if all observed facts hold (i.e, l ∈ ω if l is a positive literal, and l 6∈ ω if l is a negative literal).

The set of possible worlds is denoted by Ω ⊆ 2B×2Lobs . The size and configuration of Ω depends on
the problem that is to be analyzed. We assume that the specified set of worlds fits the respective problem
domain; especially, we assume in the following discussion that Ω does not contain any inconsistent
worlds. We define satisfaction of a ground formula F by a world ω in the usual way [16]:

Definition 5 (Satisfaction of ground formulae). A ground formula F is satisfied by a world ω (ω |= F )

• If F = a for some ground atom a, then a ∈ ω.

• If F = ¬F ′ for some ground formula F ′, then ω 6|= F ′.

• If F = F ′∧ F ′′ for formulae F ′ and F ′′, then ω |= F ′ and ω |= F ′′.

• If F = F ′∨ F ′′ for formulae F ′ and F ′′, then ω |= F ′ or ω |= F ′′.

4.2 Streams
[24] introduces the concept of threads (equivalent to the concept of runs in [9]) as finite-length sequences
of possible worlds. We extend this definition to infinite streams by removing the finite-length property:

Definition 6 (Stream). A stream is a mapping St : T → Ω.

Since T ranges over the set of natural number, a stream is an infinite possible sequence of worlds
and St(t) identifies the actual world at time t according to stream St.

In order to provide a bridge between our previously introduced PDT semantics for finite-time models
[17] and the notion of infinite streams, we partition streams into fixed-length segments.

Definition 7 (Segment). A segment S with fixed length s is a finite sequence of possible worlds :
S : τ → Ω, τ = {1, ..., s}.

To identify the temporal position of specific segments, we enumerate segments with a parameter k,
such that Sk represents the segment from time points (k ·s)+1, ..., (k ·s)+s, i.e., segment S0 identifies
the sequence of possible worlds from time t = 1 to t = s, segment S1 identifies the sequence from
t = s+ 1 to t = 2s, and so on. This notion gives rises to an alternative representation of streams:
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Lemma 1 (Stream segmentation). Every stream of possible worlds can be equivalently represented as
a sequence of segments (Sk)

∞
0 .

To distinguish the notions of time points in segments and streams, we call t an absolute time point if
t ∈ T identifies the actual time point in some stream St. We call t a relative time point if t ∈ τ identifies
a time point within a specific segment without specifying the segment’s position in the stream.

We assume that all possible streams of the application domain can be modeled with an arbitrarily
large, but finite set of possible segments S = {S1, ..., Su}. In most scenarios this requirement can be
met through an appropriate modeling choice of the segment length s. In order to be able to reason with
a set of temporal rulesR, we require that the segment length is set such that ∆tmax(R) ≤ s.

To model the transitions from one segment to the next, we model the possible segment sequences as
an ergodic Markov chain [19]. An ergodic Markov chain is a transition system such that all states are
aperiodic (i.e., returns to them can occur at irregular times) and positive recurrent (i.e., every state has a
finite mean recurrence time):

Definition 8 (Markov chain). Let S = {S1, ..., Su} be a set of possible segments. Then, transition
probabilities between segments are given through a stochastic matrix M |S|×|S| (i.e., mij specifies the
probability of a transition from segment i to segment j) , such that the segment sequence yields an
ergodic Markov chain.

An important characteristic of an ergodic Markov chain is its steady state vector:

Definition 9 (Steady state vector). For an ergodic Markov chain, the vector π is called steady state
vector, if its elements πj , (j = 1, ..., |S|) the following properties:

• 0 ≤ πj ≤ 1,

•
|S|∑
j

πj = 1,

• πi =

|S|∑
i

πimij

The last property expresses that the chain converges to the steady state vector in the long run (regardless
of the starting state). Thus, πj specifies the long-term visiting rate of segment Sj .

Due to the ergodicity, we immediately obtain a key property about the steady state vector π that we
will exploit later (cf. [19]):

Lemma 2. The long-term visiting rates πj of all possible segments S ∈ S are nonzero.

4.3 Time Windows
In order to be able to reason about temporal changes in the near future, we use a time window Wt,lw

starting at absolute time t and having a length of lw time points, i.e., some finite clipping of the infinite
stream of possible worlds. Again, the only restriction we place on the size of time windows is that
they must be large enough to include all temporal rules (i.e., lw ≥ ∆tmax(R)), and thus they may well
span across multiple segments. In a sense, a time window is a myopic representation of the stream.
This artificial limitation of time is meaningful to capture the influence of current observations over the
probabilities of contemporary events: While the probabilities of all events in the remote future will con-
verge to the long-term visiting rates of the respective segments in the Markov chain, the probabilities of
specific events within a certain time window may heavily depend on current observations and therefore
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Figure 1: Schematic depiction of the relations between different temporal concepts.

significantly deviate from the long-term visiting rates. The different possible temporal evolutions within
the time window (i.e., sequences of possible worlds for time t, ..., t+ lw) are denoted by Th1, ..., Thm

and are called threads below. Equivalently to the notion of segments, we use Th(1), ..., Th(lw) to iden-
tify the worlds of thread Th at the relative time points 1, ...lw. For notational convenience, we assume
that every thread has an additional prior world Th(0). The possible threads are determined through the
set of possible segments S and the transition matrix P of the Markov chain. Consequently, a thread in
the time window Wt,lw can be mapped onto a sequence of segments as

Th→ Sj1k , S
j2
k+1, ..., S

jx
k+x (1)

with k = b(t/s)c, x = b(t + lw − 1)/sc, and Sj1 , ..., Sjx (not necessarily distinct) segments from
S. Note that time windows may be positioned arbitrarily, i.e., the start of a time window does not
necessarily have to coincide with the start of a new segment, nor does the window length lw have to be
an integer multiple of the segment length s.

The set of all possible threads within a time window Wt,lw is denoted by Tt,lw . If the actual position
and length of the time window are not important for the analysis, in the following we simplify notation
and write T to denote the set of threads to be analyzed. A visualization of these temporal concepts is
shown in Figure 1.

4.4 Kripke Structures

With the definition of threads, we can use a slightly modified version of Kripke structures [15] to express
an agent’s possibility relations within the given time window. As usual, we define a Kripke structure as
a tuple 〈Ω,K1, ...,Kn〉, with the set of possible worlds Ω and binary relations Ki on Ω for every agent
i ∈ A. Intuitively, (ω, ω′) ∈ Ki specifies that in world ω, agent i considers ω′ as a possible world.

Since we assume that both the set of possible worlds Ω and the set of possible segments S are defined
in a way that they do not yield any blatantly impossible threads, we initialize the Kripke structure such
that a priori every agent considers all worlds possible that could occur at relative time t = 1 in some
thread Th′:

∀Th ∈ T : Ki(Th(0)) :=
⋃

Th′∈T

{Th′(1)}, i = 1, ..., n (2)
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With the evolution of time, each agent can eliminate the worlds that do not comply with its respective
observations. Through the elimination of worlds, an agent will also reduce the set of threads it currently
considers possible (if - due to some observation - a world ω is considered impossible at a relative time
point t, then all threads Th with Th(t) = ω are considered impossible). We assume that agents have
perfect recall and therefore will not consider some thread possible again if it was considered impossible
at one point. This leads to the updates of Ki w.r.t. the agent’s respective observations:

Ki(Th(t)) := {Th′(t) : (Th′(t− 1) ∈ Ki(Th(t− 1)) ∧
{ObsG(l)∈Th(t) : i∈G} = {ObsG(l)∈Th′(t) : i∈G})} (3)

Remark 1. Note that these updates are defined w.r.t. the set of threads induced by a specific time window
Wt,lw . For other time windows (obtained for example by shifting the original window), the temporal
scope changes and therefore, other sets of threads will be considered possible. This is due to the fact
that a different temporal scope naturally yields different possible evolutions.

4.5 Subjective Posterior Temporal Probabilistic Interpretations
Each agent has probabilistic beliefs about the expected evolution of a world over time. This is expressed
by subjective temporal probabilistic interpretations:

Definition 10 (Subjective posterior probabilistic temporal interpretation). Given a set of possible
threads T , some thread Th′ ∈ T , a relative time point t ∈ {1, ..., lw} and an agent i, ITh′

it : T → [0, 1]
specifies the subjective posterior probabilistic temporal interpretation from agent i’s point of view at
time t in thread Th′, i.e., a probability distribution over all possible threads:

∑
Th∈T ITh

′

it (Th) = 1.
We call Th′ the point of view (pov) thread of interpretation ITh′

it .

The prior probability of a thread Th is denoted by ITh′

i0 (Th). These priors are induced by the
transition matrix M : since we allow for a placement of a time window at arbitrary positions within the
stream, the probability of starting the thread in segment Sj1 is given through element πj1 of the steady
state vector. Then, the probability of segment Sj2 occurring next is given through the entry mj1j2 in the
transition matrixM of the Markov chain, and so on. Thus, prior probabilities of threads can be obtained
as:

Lemma 3. Let S be a set of segments, Th be a thread mapped onto a sequence of x of these segments,
M be the transition matrix of the Markov process, and π the corresponding steady state vector. Then,
the prior probability of the thread Th can be computed as

ITh
′

i0 (Th) = πj1

x−1∏
i=1

mjiji+1 (4)

Since this expression builds on global properties of the Markov chain, the prior probabilities over
the set of possible threads are identical across all possible pov threads and all agents (i.e., ITh′

i0 (Th) =

ITh′′

j0 (Th) ∀Th, Th′, Th′′ ∈ T and ∀i, j ∈ A).
Using this lemma, we can treat arbitrary clippings from the infinite Markovian stream of possible

worlds as finite threads. Thus, we have created a bridge to our previous work on PDT Logic for finite
time frames. Consequently, we can simply adopt the subsequent semantics from [17]:

Definition 11 (Interpretation update). Let i be an agent, t a time point, and Th′ a pov thread. Then,
if the system is actually in thread Th′ at time t, agent i’s probabilistic interpretation over the set of
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possible threads is given by the update rule:

ITh
′

it (Th) =

{
1

αTh′
it

· ITh′

it−1(Th) if Th(t) ∈ Ki(Th′(t))

0 if Th(t) 6∈ Ki(Th′(t))
(5)

with 1
αTh′

it

being a normalization factor to ensure that
∑
Th∈T ITh

′

it (Th) = 1:

αTh
′

it =
∑

Th∈T ,

Th(t)∈Ki(Th′(t))

ITh
′

it−1(Th)

Essentially, this rule assigns impossible threads a probability of zero and scales the probabilities of
the remaining threads such that they are proportional to the probabilities of the previous time point.

Remark 1. We assume that the system is synchronous, i.e., the agents have a global clock. Thus, even
if an agent does not observe anything in world Th(t), it is still aware of time passing and can therefore
distinguish between worlds Th(t) and Th(t− 1).

4.6 Semantics of the Belief Operator
Now, with the definitions of subjective posterior probabilistic temporal interpretations, we can give the
formal semantics for the quantified multi-agent belief operators as defined in [17]:

Definition 12 (Belief in ground formulae). Let T be a set of threads, t and t′ be relative time points in
the time window specified through T , and ITh′

it′ be agent i’s interpretation at time t′ in pov thread Th′.
Then, it follows from this interpretation that agent i believes at time t′ with a probability in the range
[`, u] that

1. A formula F holds at time t (denoted by ITh′

it′ |= B`uit′(Ft)) iff:

ITh
′

it′ |= B`uit′(Ft) iff ` ≤
∑

Th∈T ,Th(t)|=F

ITh
′

it′ (Th) ≤ u. (6)

2. A temporal rule1 rfr∆t(F,G) holds (denoted by ITh′

it′ |= B`uit′(r
fr
∆t)) iff:

` ≤
∑
Th∈T

ITh
′

it′ (Th) · fr(Th, F,G,∆t) ≤ u. (7)

3. A belief B`juj

jt (·) of some agent (denoted by ITh′

it′ |= B`uit′(B
`juj

jt (·)) holds iff:

` ≤
∑

Th∈T ,

ITh
jt |=B

`juj
jt

ITh
′

it′ (Th) ≤ u. (8)

Remark 2. Agent i does not know the actual beliefs of agent j. However, due to the assumption of
common and equal priors, agent i is able to reason about agent j’s hypothetical updates given that the
system is in a specific thread. Thus, agent i is able to compute (8) without knowing j’s exact beliefs.

Using these definitions in combination with Lemma 3 allows us to employ the techniques from [17]
to analyze the temporal evolution of arbitrary belief expressions within streams of possible worlds.

1See [17] for a definition of temporal rules rfr∆t(F,G) and frequency functions fr(Th, F,G,∆t). We have included the
definition of beliefs in temporal rules only for the sake of completeness, it is not required to follow the remainder of this paper.
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5 Example
To illustrate the application of PDT Logic for streams, consider the following simplified example: a taxi
driver A is positioned at the central station and is occupied with driving two different routes from there,
either to the airport (requiring one time step) or to the stadium (requiring two time steps). These routes
of the taxi driver are depicted in Figure 2(a). Furthermore, we assume that the driver can take a break at
the stadium every once in a while and inform her boss B about it. This means that both A and B know
that A is at the stadium (and they are both aware that the other agent knows this), so we can model the
effect of this as a shared observation ObsAB(stadium). A possible segmentation of the infinite stream
of possible worlds into segments could use segments of length three. This yields the set S of possible
3-step-sequences shown in Figure 2(b). If we assume that driving to the airport has a probability of,
say, 0.7, and accordingly, the probability of driving to the stadium is 0.3, we obtain the Markov chain
depicted in Figure 2(c) with the corresponding transition matrix shown in Figure 2(d).

One can easily verify that this yields the longterm visiting rates πi of Segments Si:

π ≈
(
.172 .074 .245 .150 .105 .105 .032 .074 .045

)
(9)

To show the evolution of the agents’ beliefs, consider a time window of length lw = 6, i.e., a sequence
of two segments. Assume that we are interested in the beliefs of, say, A being at the stadium (i.e.,
F ≡ stadium) at relative time t = 4, denoted by W (4) |= F . Analysis of the set of segments S shows
that W (4) |= F iff the second segment of the considered time window is S5. Thus, the probability of
being at the stadium at relative time point 4 is equivalent to the property of segment S5 occurring as the
second segment within the time window. Hence, we can obtain the prior belief of both agents in this
event from the steady state vector (through π2 ·m25 + π4 ·m49 + π7 ·m75) as

B0.15 0.16
i0 (F4), i ∈ {A,B}.

Now suppose that time evolves for 3 steps and that the actual events are the ones depicted in S4.
Then, driver A can update her belief in the event F4 to

B0.3 0.3
A3 (F4)

(if she is on her way to the stadium at t = 3, she knows that she will be there at t = 4 if she takes a
break), while B (lacking any new information) maintains the same belief expressed at time 0. Since A
is aware that B did not receive new information,

B1 1
A3 (B0.15 0.16

B3 (F4))

also holds.
Finally, consider the situation at t = 4: if A decides to take a break, she informs B (represented in

S9), and consequently,
B1 1
i4 (F4), i ∈ A,B

holds. Else, if A does not take a break, her beliefs are updated to

B0 0
A4 (F4),

while B’s beliefs (through elimination of possibility S9) are updated to

B0.10 0.11
B4 (F4).

This small example shows how a stream of possible worlds can be used to generate an infinite stream
of evolving multi-agent beliefs. Furthermore, it shows how the individual beliefs of agents can diverge
depending on their respective information. More detailed examples on the application of PDT Logic
including temporal rules can be found in [17].
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Airport

Station

Stadium

∆
t=

1

∆
t=

2

(a) possible routes

S1: airport(1) station(2) airport(3)

S2: airport(1) station(2) enroute(3)

S3: station(1) airport(2) station(3)

S4: station(1) enroute(2) stadium(3)

S5: stadium(1) enroute(2) station(3)

S6: enroute(1) stadium(2) enroute(3)

S7: enroute(1) station(2) enroute(3)

S8: enroute(1) station(2) airport(3)

(b) the set S of possible 3-step sequences

S1

S2

S3

S4

S5

S6S7

S8

S9

.7

.3

1

.49

.2
1

.3

.21

.49
.3

.4
9

.21

.3

.7

.3
1

.7

.3

1

(c) segment transitions

M =



0 0 .7 .3 0 0 0 0 0
0 0 0 0 1 0 0 0 0
.49 .21 0 0 0 .3 0 0 0
0 0 0 0 0 0 .21 .49 .3
.49 .21 0 0 0 .3 0 0 0
0 0 .7 .3 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 .7 .3 0 0 0 0 0
0 0 0 1 0 0 0 0 0


(d) transition matrix

Figure 2: Taxi driver example: (a) depicts the possible routes, (b) all possible 3-step sequences, (c) the
resulting possible segment transitions, and (d) the corresponding transition matrix.
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6 Conclusion

In this paper, by extending our previous work on PDT Logic to infinite time domains, we have developed
a general framework to reason about the belief change in multi-agent stream scenarios. Although the
actual reasoning about temporal beliefs is carried out for finite windows of time, arbitrary placements of
these windows within infinite streams of possible worlds enable unlimited temporal reasoning in stream
domains. For example, one could employ a sliding window mechanism to provide for continuous rea-
soning about the evolution of beliefs. As described in the introductory example, using an infinite stream
of possible worlds as an input to the formalism can be beneficial because it allows for a continuing
analysis of changing situations without requiring frequent re-initializations. While the employed model
of infinite streams of possible worlds based on a Markov chain restricts the application domains to sce-
narios that can be modeled through recurring segments, this still allows for a wide range of applications
because the properties of most domains can be captured with a suitable selection of length and number
of segments.

PDT Logic for streams as introduced in this work provides the foundation for future work. While we
have shown that PDT Logic for streams can be analyzed with the methods introduced previously for the
finite-time formalism PDT Logic, we will continue to investigate optimized decision procedures, using
both exact and approximate methods. First promising approaches are given through a combination of
established Markov chain inference algorithms with the APT Logic decision algorithms described in
[25].
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