
Kalpa Publications in Computing

Volume 1, 2017, Pages 124–134

LPAR-21S: IWIL Workshop
and LPAR Short Presentations

Set of Support for Theory Reasoning

Giles Reger1 and Martin Suda2∗

1 University of Manchester, Manchester, UK
2 TU Wien, Vienna, Austria

Abstract

This paper describes initial experiments using the set of support strategy to improve
how a saturation-based theorem prover performs theory reasoning with explicit theory ax-
ioms. When dealing with theories such as arithmetic, modern automated theorem provers
often resort to adding explicit theory axioms, for example x + y = y + x. Reasoning with
such axioms can be explosive. However, little has been done to explore methods that
mitigate the negative impact of theory axioms on saturation-based reasoning. The set
of support strategy requires that all inferences involve a premise with an ancestor in a
so-called set of support, initially taken to be a subset of the input clauses, usually those
corresponding to the goal. This leads to completely goal orientated reasoning but is incom-
plete for practical reasoning (e.g. in the presence of ordering constraints). The idea of this
paper is to apply the set of support strategy to theory axioms only, and then to explore
the effect of allowing some limited reasoning within this set. The suggested approach is
implemented and evaluated within the Vampire theorem prover.

1 Introduction

In this paper we discuss how the set of support strategy can be utilised to improve theory
reasoning with explicit theory axioms in saturation-based theorem provers. The addition of
theory axioms has been shown to be surprisingly effective at proving many non-ground problems
combining the theory of uninterpreted functions, arithmetic and arrays (i.e. those found in
TPTP and SMTLIB). However, the use of theory axioms is limited by their explosive nature
in the search space; reasoning with theory axioms can often be dominated by the generation
of irrelevant theory consequences. This is where the set of support strategy, and the idea it
represents, can help. By limiting the way in which theory axioms interact with each other, we
hope to preserve their benefits whilst avoiding some of their disadvantages.

Reasoning with first-order quantifiers and first-order theories such as arithmetic must be
necessarily incomplete for theoretical reasons and is very hard in practice. There are various
successful approaches that we do not consider in this work as we are interested in improving
theory axiom reasoning which has been shown to be useful both independently of, and in
complement to, other approaches.

∗This author was partially supported by ERC Starting Grant 2014 SYMCAR 639270 and the Austrian
research projects FWF S11403-N23 and S11409-N23.

T.Eiter, D.Sands, G.Sutcliffe and A.Voronkov (eds.), LPAR-21S (Kalpa Publications in Computing, vol. 1),
pp. 124–134



Set of Support for Theory Reasoning Reger and Suda

The contributions of this paper are (i) an initial study showing that removing theory axioms
from the set of support can improve theory reasoning, and (ii) a new strategy inspired by set
of support that performs partial saturation of the theory axioms in a dynamic manner to a
given depth. In the remainder of this introduction we give an example-led overview of these
contributions. The rest of the paper will give the details and evidence. Section 2 provides the
relevant background, Section 3 describes our new idea and Section 4 gives some concluding
remarks.

To reason in theories, such as arithmetic, saturation-based theorem provers, such as Vam-
pire [12], often add theory axioms. For example, to prove the unsatisfiability of

f(1 + a) < a x < f(x + 1)

we can use the axioms

¬(x < x) x + y = y + x (x < y ∧ y < z)→ x < z

to produce the following proof

x + y = y + x x < f(x + 1)

x < f(1 + x)

(x < y ∧ y < z)→ x < z f(1 + a) < a

¬(x < f(1 + a)) ∨ x < a
a < a ¬(x < x)

⊥
We could have chosen different axioms to produce a different proof and as arithmetic cannot
be captured by a finite set of axioms we need to choose which axioms we want to add. The
above three seem to be reasonable base axioms in this case. Notice that these axioms were
good enough in the sense that we never derive consequences of axioms themselves. However,
during proof search it might be possible (with a poorly chosen selection function) to start to
derive consequences such as

¬(x < y) ∨ ¬(y < x)

and (less usefully)

¬(x0 < x1) ∨ ¬(x2 < x0) ∨ ¬(x1 < x3) ∨ ¬(x4 < x5) ∨ ¬(x3 < x4) ∨ ¬(x5 < x2)

which are very unlikely to be helpful for proof search. In general, symmetry and transitivity
are explosive axioms. This observation motivates our approach where we prevent inferences
between theory axioms using the set of support mechanism.

However, sometimes these are needed. For example, the problem ARI176=1 from TPTP [20]
is equivalent to the clause

3x + 5y 6= 22

which can be proved unsatisfiable1 using the theory axioms

x + y = y + x x + (y + z) = (x + y) + z x ∗ 1 = x x ∗ (y + z) = (x ∗ y) + (x ∗ z)

by first deriving the following consequence

x ∗ 1 = x x ∗ (y + z) = (x ∗ y) + (x ∗ z)

x ∗ (1 + y) = x + (x ∗ y) x + (y + z) = (x + y) + z

(x ∗ (1 + y)) + z = x + ((x ∗ y) + z)
1Using Vampire in default mode.

125



Set of Support for Theory Reasoning Reger and Suda

but cannot be solved using Vampire’s competition mode without performing any inferences
between theory axioms. This suggests that it is necessary (in some sense independently of the
theory axioms selected) to allow for a more fine-grained control over how theory axioms are
allowed to interact. This motivates the idea of partial theory axiom saturation.

2 Background

2.1 First Order Logic with Theories

We consider a many-sorted first-order logic with equality. A term is either a variable, a constant,
or a function symbol applied to terms. A literal is either a propositional symbol, a predicate
applied to terms, an equality of two terms, or a negation of either. Function and predicate
symbols are sorted i.e. their arguments (and the return value in the case of functions) have
a unique sort drawn from a finite set of sorts S. We only consider well-sorted literals. There
is an equality symbol per sort and equalities can only be between terms of the same sort.
Formulas may use the standard notions of quantification and logical connectives, but in this
work we assume all formulas are clausified using standard techniques. A clause is a disjunction
of literals where all variables are universally quantified (existentially quantified variables can
be replaced by Skolem functions during clausification).

An interpretation I assigns a non-finite domain Ds to every sort s ∈ S, maps every term
t of sort s ∈ S to a value in Ds, and assigns Boolean values to atoms. An interpretation is a
model for a set of clauses if for each clause L1∨ . . .∨Ln it assigns true to at least one literal Li.
A theory T constraints the set of viable interpretations by fixing interpretations for some part
of the signature, which we refer to as interpreted. For example, the theory of integer arithmetic
may fix the interpretation of a selected sort sint to (be isomorphic to) the set of mathematical
integers Z and analogously assign the usual meanings to {+,−, <,>, ∗}. An interpretation
is consistent with a theory T if it satisfies that theory’s constraints and is consistent with a
combination of theories if it satisfies the constraints of each theory.

2.2 Saturation Based Theorem Proving

Theorem provers such as Vampire are refutational and saturation-based. The idea is that an
input formula of the form Premises → Conjecture is negated, to give Premises ∧ ¬Conjecture,
then clausified to produce a set of clauses S. This set is then saturated with respect to some
inference system I meaning that for every inference from I with premises in S the conclusion
of the inference is also in S. If the saturated set S contains a contradiction then the initial

Figure 1: Illustrating the Given Clause Algorithm.

126



Set of Support for Theory Reasoning Reger and Suda

formula is necessarily valid. Otherwise, if I is a complete inference system, and importantly
the requirements for this completeness have been preserved, then S is satisfiable and the input
formula is not valid. Finite saturation may not be possible and a lot of research over the past
50 years has focussed on how to control this saturation-based proof search to make finding a
contradiction more likely. This is also the focus of this paper.

The standard approach to saturation is the given-clause algorithm illustrated in Figure 1.
The idea is to have an active set of clauses with the invariant that all inferences between active
clauses have been performed and a passive set of clauses waiting to be activated. The algorithm
then iteratively selects a given clause from passive and performs all necessary inferences to add
it to active. The process of clause selection is important but not discussed here.

Vampire uses resolution and superposition as its inference system I. A key feature of
this calculus is the use of literal selection and orderings to restrict the application of inference
rules, thus restricting the growth of the clause sets. There are well known conditions on literal
selection that preserve completeness.

Another very important concept related to saturation is the notion of redundancy. It is
not key to this paper so we do not discuss the details but the idea is that some clauses in
S are redundant in the sense that they can be safely removed from S without changing the
completeness result. The notion of saturation then becomes saturation-up-to-redundancy.

As a final note, from this discussion it may appear that completeness of I is important. But
as we showed in our recent work on literal selection [10], breaking the conditions required for
completeness can be helpful in proof search. Additionally, the focus of this paper is in theory
reasoning, where the previous completeness arguments no longer hold.

2.3 Theory Reasoning

Here we focus on approaches that target problems combining theories and quantifiers i.e. we
ignore purely ground theory reasoning as this is not the focus of this work.

There are two directions of research in the area of reasoning with problems containing
quantifiers and theories. The first is the extension of SMT solvers with instantiation heuristics
such as E-matching [8, 7]. The second is the extension of first-order reasoning approaches with
support for theory reasoning. There have been a number of varied attempts in this second
direction with some approaches extending various calculi [3, 9, 11, 18, 1, 6, 5] or using a SMT
solver to deal with the ground part of the problem [15, 16].

In Vampire theory reasoning is currently dealt with in four ways:

1. Ground evaluation of theory terms e.g. 1 + 2 is evaluated to 3 and 1 < 2 evaluated to
true,

2. Relevant theory axioms are added based on the signature of the problem i.e. if the problem
uses + then theory axioms such as x + y = y + x and x + 0 = x are added,

3. The AVATAR modulo theories approach incorporates an SMT solver to perform ground
theory reasoning, see [16],

4. Simple heuristic instantiation is performed to delete literals e.g. x < 0∨p(x) is instantiated
to generate p(1).

It is the second of these approaches (theory axioms) that we focus on in this paper. Notice
that Vampire primarily performs non-ground theory reasoning via theory axioms as the instan-
tiation methods implemented in Vampire are currently quite simplistic. The theory axioms

127



Set of Support for Theory Reasoning Reger and Suda

x + (y + z) = (x + y) + z x + 0 = x x + y = y + x
−(x + y) = (−x +−y) −− x = x x + (−x) = 0

x ∗ 0 = 0 x ∗ (y ∗ z) = (x ∗ y) ∗ z x ∗ 1 = x
x ∗ y = y ∗ x (x ∗ y) + (x ∗ z) = x ∗ (y + z) ¬(x < y) ∨ ¬(y < z) ∨ ¬(x < z)

x < y ∨ y < x ∨ x = y ¬(x < y) ∨ ¬(y < x + 1) ¬(x < y) ∨ x + z < y + z
¬(x < x) x < y ∨ y < x + 1 (for ints) x = 0 ∨ (y ∗ x)/x = y (for reals)

Figure 2: Theory Axioms currently added by Vampire based on the problem signature.

Vampire might add are given in Figure 2.2 It is important to note that Vampire normalises
input formulas by rewriting all inequalities in terms of < and to rewrite difference in terms of
addition and unary minus.

However, theory axiom reasoning is explosive. As a simple demonstration, we take the
TPTP problem SYN000=2, which is designed to use the full set of theory functions and predicates
provided by TPTP and perform two small experiments. Firstly, proving this problem in default
mode in Vampire generates of 223 clauses, 90 of which are theory consequences (40 %), of which
only 1 is used in the proof. Secondly, we negate the conjecture to make it satisfiable and run
Vampire in default proving mode for 10 seconds. After 10 seconds Vampire has generated
456 973 clauses, of which 449 493 are consequences of the theory axioms, over 98 %. This
supports our claim that theory reasoning is explosive and establishing this claim experimentally
is something we plan to do shortly.

2.4 Set of Support

The set of support strategy was introduced in [22, 14] as a method for restricting the possible
inferences. The idea is to split the clauses into a set of support and the rest, and then restrict
inferences so that they must include at least one clause that is in the set of support, with new
clauses being added to the set of support. Another way of phrasing this is that all inferences
must have a clause in the initial set of support as an ancestor.

If this description feels familiar then it should as the above given-clause algorithm is based on
the set-of-support strategy. Here the set of support is the passive set and the rest of the clauses
must be immediately added to the active set, breaking the invariant that all inferences between
clauses in this set have been performed. This immediately breaks the condition required for
completeness. There are arguments for how to preserve completeness using the set of support
strategy, but as they generally restrict the application of techniques that we find to be essential
for practical reasoning, we do not consider them. Note that our context of theory reasoning
also introduces larger barriers for completeness. We are interested in how this strategy can be
used to prevent the explosion of theory axioms.

In the general set of support strategy it is not prescribed which clauses should be added to
the set of support, but it is reasonable to assume that it should at least include the goal, thus
encouraging goal-directed reasoning. This is the approach taken in Vampire where only the
conjecture is added to the set of support. We note here that this means that set of support
can only be used for problems containing a conjecture which excludes many problems in TPTP
and all problems in SMTLIB [4].

2We have ignored some less standard operators such as floor and ceiling operators. We also ignore integer
division for simplicity of exposition.

128



Set of Support for Theory Reasoning Reger and Suda

Table 1: Results of an experiment looking at the usefulness of set of support strategy.

competition mode competition mode with sos=off

Solved 11 948 11 613
Uniques 422 87

In Vampire there are three set of support related options:

• off: do not perform set of support reasoning,

• on: perform set of support reasoning performing standard literal selection,

• all: perform set of support reasoning selecting all literals in those clauses initially added
to active.

The last option helps mitigate some of the incompleteness introduced by the set of support
strategy.

As a quick demonstration of the general usefulness of the set of support strategy we con-
ducted the following experiment.3 We ran Vampire in competition mode (CASC mode) on
the full TPTP library and then ran it again forcing sos=off. The results of this experiment
are given in Table 1. This shows that the set of support strategy was needed to solve 422 extra
problems. Conversely, when it was switched off, Vampire was able to solve an additional 87
problems, most likely due to the additional time available after discarding certain strategies.

3 Set of Support for Theory Reasoning

In this section we describe our idea to use the set of support strategy to control the explosive
nature of theory axioms.4

3.1 Special Treatment for Theory Axioms

The basic idea is to treat the given problem as the set of support in its entirety and only
place the theory axioms straight into the active set, thus preventing inferences between theory
axioms. This has the advantage that it applies to any theory problem, including those that do
not include a specific conjecture. We call this option sos=theory.

This was generally straightforward to implement, with one exception. The set of support
strategy in Vampire predates AVATAR [21, 17]. One element of AVATAR is that activated
clauses can be deactivated i.e. placed back into passive. When AVATAR and the set of support
strategy are combined this means that clauses which are initially placed in the active set might
end up being reintroduced into the passive set. We have not explored the effect of this on
general reasoning but in this case we enforced the condition that theory axioms should not
participate in inferences with each other by directly deleting such consequences as they are
generated.

Given this implementation, we carried out an experiment on all relevant problems from
SMTLIB (i.e. those containing theories and quantifiers) using the default Vampire strategy

3All such experiments in this paper make use of StarExec [19] and version 4.1 of Vampire.
4We note that we do not discuss any related work that considers alternative methods for restricting the

explosion of axioms. For example, Löchner’s work on restricting redundant inferences with AC axioms [2, 13].
Considering whether such work is relevant to this approach remains further work.

129



Set of Support for Theory Reasoning Reger and Suda

Table 2: Results of an experiment exploring the sos=theory option.

default mode default mode + sos=theory

Solved 30 951 30 965
Uniques 530 227

and a 60 second time limit. Table 2 gives the results of this experiment. As expected, the total
number of problems solved decreases, but there are a reasonable number of unique solutions,
suggesting that this approach is helpful in general.

3.2 How Deep is Theory Reasoning?

The next obvious step is to allow some limited inferences between theory axioms. However,
before we do this, we should understand how theory axioms are used in proofs. We want to
know how deep theory reasoning is to understand how many inferences between theory axioms
we actually need.

To understand this question we ran Vampire in default mode5 across SMTLIB and analysed
every proof, recording how many inferences between theory axioms were required. The results
are given in the below table.

Theory axiom depth count
none 28 409

0 1732
1 209
2 304
3 200
4 49
5 21
6 27

The table shows that theory reasoning is, in general, not very deep. Note that depth is not the
same as the number of inferences requiring theory axioms (which we did not count). The depth
reported in the table is the maximum derivation depth over clauses derived purely from theory
axioms which occur in the proof. An important observation from the above table is that over
90% of solutions were obtained using a default strategy with no calls to an SMT solver and no
theory axioms i.e. the only theory-specific feature used evaluation.

The next interesting question is what these deep theory consequences look like. Many are
similar to this theory consequence

0 < x ∨ x < 4

derived in a proof of UFLIA/sledgehammer/TwoSquares/z3.637729.smt2. Here the number 4
was generated via the application of theory axioms and the use of theory axioms to generate
useful instances seems to be a common theme. A similar case is seen for the following deep
theory consequences

¬((x + (y + ((−x) + 2.0))) < y) and ¬(2.0 + x < x)

5Using the strategy -sa discount --input syntax smtlib2 -t 60. We use discount saturation loop for
stability as the default lrs option is non-deterministic.

130



Set of Support for Theory Reasoning Reger and Suda

Table 3: Results from an experiment looking at different partial saturation thresholds.

Count when threshold = union
Theory axiom depth 0 1 2 3 5 10 ∞

none 27 553 28 483 28 490 28 487 28 577 28 476 28 409
0 3142 1943 1813 1757 1769 1746 1732
1 550 237 209 217 208 209
2 550 315 310 307 304
3 312 254 213 200
4 69 48 49
5 61 21 21
6 27 27

total without none 3142 2493 2600 2593 2680 2570 2542 3785
uniques 866 43 27 17 90 2 4

total with none 30 695 30 976 31 090 31 080 31 257 31 046 30 951 31 784
uniques 153 67 54 27 135 5 2

derived in a proof of NRA/keymaera/ETCS-essentials-live-range2.proof-node1388.smt2.
This suggests that some deep reasoning with theory axioms can be replaced by targeted instan-
tiation methods. Integrating more intelligent instantiation techniques into Vampire is an area
we are currently researching and we hope that these techniques can complement theory axiom
reasoning.

3.3 Partial Saturation of Theory Axioms

Motivated by some examples and an intuition that it would be helpful, we implemented a
method for partially saturating the set of theory axioms. Based on the above experiment
demonstrating that theory reasoning was generally shallow, we wanted a method that gave us
fine-grained control over how deep theory reasoning became. Our solution is to extend the
previous idea to delete clauses with theory axioms as parents.

We attach a flag and a counter to each clause where the flag indicates whether the clause
is a pure theory consequence and the counter counts the maximum number of inference steps
between the clause and a theory axiom, i.e. the clause’s depth in the proof. Inferences are
updated to preserve and update these values as appropriate. Whenever we generate a pure
theory consequence with depth larger than a given threshold we delete this clause.

Motivated by the above results we then evaluate this new approach using various thresholds.
The results of this experiment, again on relevant problems drawn from SMTLIB, are given in
Table 3. We initially exclude solutions that make no use of theory axioms and report these
at the end separately. Here setting a threshold to 5 solved more problems than the previous
two strategies of sos=theory and default theory axiom reasoning. This was not surprising
as our previous experiment suggested that theory reasoning beyond this level was not useful.
The slight variations between the 10 and ∞ cases are a demonstration of the non-deterministic
nature of Vampire where techniques such as the limited resource strategy depend on the time
taken to make certain proof steps. It is interesting to note that the threshold value affects the
number of problems solved without theory axioms. This is due to the presence of theory axioms
impacting the way in which the search space grows. However, it is not clear why a threshold
of 0 is not optimal in this case. This is something we will explore further.

131



Set of Support for Theory Reasoning Reger and Suda

Table 4: Results from an experiment applying this idea to SMTLIB competition mode

competition mode competition mode + sos=theory threshold=5

Solved 37 009 36 821
Uniques 254 66

Anecdotally, we can make some further observations, which we plan to explore experimen-
tally later:

• Frequently, problems solvable with threshold n are still solvable with threshold m < n;
this is already clear from the results in Table 3.

• Decreasing the threshold can dramatically decrease the amount of time it takes to find
a proof and the length of the proof found. This is what we hoped and our hypothesis is
that much unnecessary theory reasoning is being avoided.

• Decreasing the threshold can dramatically increase the amount of time it takes to find a
proof and the length of the proof found. Our hypothesis here is that reasoning that might
have been done with theory axioms is now being done with non-pure consequences, which
takes more effort.

• The reasoning depth reported does not account for evaluation. Some problems had very
long evaluation chains leading to depths of over 300. We chose to exclude evaluation as
the case of performing multiple evaluations in sequence is not interesting.

To further evaluate these ideas we forced these new options on top of the SMTCOMP
competition mode and ran Vampire for the competition limit of 30 minutes on all of the
relevant problems in SMTLIB. The results are given in Table 4. This shows that this new
option is able to solve problems previously unsolvable by the competition mode, a significant
result. Notice that the overall performance is worse when using the new option. This is
because the competition mode makes use of theory reasoning techniques that are not turned on
in default mode. This suggests that the threshold value should be different when using these
other options. Exploring the interaction between this new option and other theory reasoning
approaches (mainly the AVATAR modulo theories work [16]) remains further work.

4 Conclusion

This paper described a new approach to theory reasoning that leverages the set of support
strategy to tame the explosive nature of theory axioms. The idea is to prevent inferences
between theory axioms of a certain depth. Initial experiments showed that this idea can be
very useful.

More work remains to full explore this idea. Directions we plan to explore include:

• Experimentally confirming the hypothesis that theory axiom reasoning is explosive.

• Understanding the relationship between these new options and other theory reasoning
strategies, for example, AVATAR modulo theories, and other proof search parameters in
general.

132



Set of Support for Theory Reasoning Reger and Suda

• Analysing in greater depth the kind of deep theory consequences that are generated and
analysing whether it would be sensible to include directly consequences that are used
often in proofs.

• Exploring whether all theory axioms should be treated equally in this approach. For
example, perhaps some theory axioms are less explosive and should be allowed to partake
in deeper reasoning.

The successful features described in this paper will be available in the next public release of
Vampire.

References

[1] Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. Superposition modulo linear arith-
metic SUP(LA). In Silvio Ghilardi and Roberto Sebastiani, editors, Frontiers of Combining Sys-
tems, 7th International Symposium, FroCoS 2009, Trento, Italy, September 16-18, 2009. Proceed-
ings, volume 5749 of Lecture Notes in Computer Science, pages 84–99. Springer, 2009.

[2] Jürgen Avenhaus, Thomas Hillenbrand, and Bernd Löchner. On Using Ground Joinable Equations
in Equational Theorem Proving. Journal of Symbolic Computation, 36(1-2):217–233, 2003.

[3] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational theorem proving for hierarchic
first-order theories. Appl. Algebra Eng. Commun. Comput., 5:193–212, 1994.

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.

[5] P. Baumgartner and U. Waldmann. Hierarchic Superposition With Weak Abstraction. In M.P.
Bonacina, editor, Proceedings of the 24th International Conference on Automated Deduction, num-
ber 7898 in Lecture Notes in Artificial Intelligence, pages 39–57. Springer-Verlag, 2013.

[6] Maria Paola Bonacina, Christopher Lynch, and Leonardo Mendonça de Moura. On deciding
satisfiability by theorem proving with speculative inferences. J. Autom. Reasoning, 47(2):161–189,
2011.

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient e-matching for SMT solvers. In Au-
tomated Deduction - CADE-21, 21st International Conference on Automated Deduction, Bremen,
Germany, July 17-20, 2007, Proceedings, pages 183–198, 2007.

[8] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program checking.
J. ACM, 52(3):365–473, 2005.

[9] Harald Ganzinger and Konstantin Korovin. Theory instantiation. In Miki Hermann and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning, 13th Interna-
tional Conference, LPAR 2006, Phnom Penh, Cambodia, November 13-17, 2006, Proceedings,
volume 4246 of Lecture Notes in Computer Science, pages 497–511. Springer, 2006.

[10] Kryštof Hoder, Giles Reger, Martin Suda, and Andrei Voronkov. Selecting the selection. In Nicola
Olivetti and Ashish Tiwari, editors, Automated Reasoning: 8th International Joint Conference,
IJCAR 2016, Coimbra, Portugal, June 27 – July 2, 2016, Proceedings, pages 313–329, Cham,
2016. Springer International Publishing.

[11] Konstantin Korovin and Andrei Voronkov. Integrating linear arithmetic into superposition cal-
culus. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic, 21st In-
ternational Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland,
September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in Computer Science, pages
223–237. Springer, 2007.

[12] Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, CAV 2013, volume 8044 of Lecture Notes in Computer
Science, pages 1–35, 2013.

133

www.SMT-LIB.org


Set of Support for Theory Reasoning Reger and Suda

[13] Bernd Löchner. Advances in Equational Theorem Proving – Architecture, Algorithms, and Redun-
dancy Avoidance. PhD thesis, Universität Kaiserslautern, 2005.

[14] William McCune. OTTER 2.0. In Mark E. Stickel, editor, 10th International Conference on
Automated Deduction, Kaiserslautern, FRG, July 24-27, 1990, Proceedings, volume 449 of Lecture
Notes in Computer Science, pages 663–664. Springer, 1990.

[15] V. Prevosto and U. Waldmann. SPASS+T. In G. Sutcliffe, R. Schmidt, and S. Schulz, edi-
tors, Proceedings of the FLoC’06 Workshop on Empirically Successful Computerized Reasoning,
3rd International Joint Conference on Automated Reasoning, number 192 in CEUR Workshop
Proceedings, pages 19–33, 2006.

[16] Giles Reger, Nikolaj Bjorner, Martin Suda, and Andrei Voronkov. AVATAR modulo theories. In
Christoph Benzmüller, Geoff Sutcliffe, and Raul Rojas, editors, GCAI 2016. 2nd Global Conference
on Artificial Intelligence, volume 41 of EPiC Series in Computing, pages 39–52. EasyChair, 2016.

[17] Giles Reger, Martin Suda, and Andrei Voronkov. Playing with AVATAR. In P. Amy Felty and
Aart Middeldorp, editors, Automated Deduction - CADE-25: 25th International Conference on
Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, pages 399–415, Cham,
2015. Springer International Publishing.

[18] P. Rümmer. A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic.
In I. Cervesato, H. Veith, and A. Voronkov, editors, Proceedings of the 15th International Con-
ference on Logic for Programming Artificial Intelligence and Reasoning, number 5330 in Lecture
Notes in Artificial Intelligence, pages 274–289. Springer-Verlag, 2008.

[19] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec, a cross community logic solving
service. https://www.starexec.org, 2012.

[20] Geoff Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,
43(4):337–362, 2009.

[21] Andrei Voronkov. AVATAR: The architecture for first-order theorem provers. In Armin Biere and
Roderick Bloem, editors, Computer Aided Verification, volume 8559 of Lecture Notes in Computer
Science, pages 696–710. Springer International Publishing, 2014.

[22] Lawrence Wos, George A. Robinson, and Daniel F. Carson. Efficiency and completeness of the set
of support strategy in theorem proving. J. ACM, 12(4):536–541, October 1965.

134

https://www.starexec.org

	Introduction
	Background
	First Order Logic with Theories
	Saturation Based Theorem Proving
	Theory Reasoning
	Set of Support

	Set of Support for Theory Reasoning
	Special Treatment for Theory Axioms
	How Deep is Theory Reasoning?
	Partial Saturation of Theory Axioms

	Conclusion

