
EPiC Series in Computing

Volume 50, 2017, Pages 93–107

GCAI 2017. 3rd Global Con-
ference on Artificial Intelligence

A Genetic Algorithm for Truck Dispatching in Mining

Wesley Cox1, Tim French1, Mark Reynolds1, and Lyndon While1

Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
{wesley.cox,tim.french,mark.reynolds,lyndon.while}@uwa.edu.au

Abstract

We apply genetic algorithms (GAs) to evolve cyclic finite automata for scheduling the
dispatch of trucks in mines. The GA performs well generally, and on problems which
include one-lane roads, the GA was able to find solutions that utilised shovels very well,
with low contention and using fewer trucks than both the widely-used linear programming
DISPATCH algorithm, and commonly-used greedy heuristics. The GA provides significant
cost-savings, or production increases, on problems where alternative algorithms do not
adapt well.

1 Introduction

Industrial supply chain management and scheduling tasks are a serious real-world application of
temporal reasoning techniques. Traditional techniques are often based on linear programming
(LP), specific heuristics or queuing theory. In this paper we aim to consider whether evolution-
ary search techniques coupled with timed automata can compete with traditional methods.

In mines, trucks travel between shovels, which load trucks with ore, and crushers, where
trucks unload ore. When a truck has finished being serviced at a location it requires a new
destination, provided by the dispatcher. Variable conditions in the mine necessitate real-time
decision making. Poor dispatching choices can lead to long queues at some shovels, while
others go under-utilised. To solve this problem, automated dispatching methods can be used to
optimise the throughput of a mine. Truck haulage typically represents 50-60% of mining costs
[1], so a dispatching method should minimise the number of trucks required to achieve good
throughput. Relative small increases in production can be highly profitable in this industry.

We apply genetic algorithms (GAs) to produce a controller for dispatching decisions. GAs
are a stochastic search technique inspired by natural selection [26]. Solutions are represented
as chromosomes that reproduce through crossover and mutation, and are evaluated by a fitness
function. A population of high performing solutions survives and reproduces, leading to even
better solutions. We use a GA to evolve sets of cyclic finite automata that are used to perform
dispatching decisions. Dispatching locations each cycle through a list of destinations, which
have been optimised by the GA for the particular mine.

A common industry approach used in over 200 mines is the DISPATCH software developed
by Modular Mining Systems [13]. The dispatching algorithm used by DISPATCH was originally
presented by White and Olsen [24] and White et al. [25], though it has been assumed that due
to its commercial status, not all details were provided [1]. The DISPATCH commercial software

C. Benzmüller, C. Lisetti and M. Theobald (eds.), GCAI 2017 (EPiC Series in Computing, vol. 50), pp. 93–107



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

is a fully fledged mine management system and it seems likely that the dispatching algorithm
itself would have evolved since the original theoretical algorithm was presented. We refer to the
original dispatching algorithm simply as DISPATCH. Using a discrete event simulator, our ap-
proach is compared against common greedy heuristics, as well as an adaptation of DISPATCH.
The heuristics and DISPATCH are shown to be insufficient on complicated set-ups.

We test the approach on three different problem types of varying complexity. The first two
use only two-lane roads and previous algorithms are sufficient. The third problem introduces
one-lane roads, requiring a more global solution to handle contention in the road network.
The GA is shown to achieve high performance on the third problem with fewer trucks than
alternative algorithms.

The rest of the paper is structured as follows. Section 2 describes previous work on real-
time dispatching strategies in open-pit mines. Section 3 describes our approach to dispatching
and the model used for testing. Section 4 describes the experiments and discusses the results.
Section 5 provides the conclusion.

2 Previous Work

Dispatching strategies in open-pit mines have been summarised by Munirathinam and Yingling
[14] and Alarie and Gamache [1]. Presented here are brief summaries.

Many greedy heuristics have been summarised by Tan and Ramani [22]. Common greedy
heuristics are: Minimise Truck Cycle Time (MTCT), dispatch to the shovel from which the
truck is expected to return soonest; Minimise Truck Waiting Time (MTWT), dispatch to
the shovel where the truck is expected to wait the least time; Minimise Truck Service Time
(MTST), dispatch to the shovel where the truck is expected to be serviced in the least time;
and Minimise Shovel Waiting Time (MSWT), dispatch to the shovel that has been waiting
longest, or will be available soonest.

Several dispatching strategies of varying complexity have been described in the literature.
The less greedy approaches are commonly plan-driven, i.e. real-time dispatching is performed
based on a predetermined operational plan; and produce temporary schedules, i.e. each decision
considers multiple trucks but only the most urgent assignment is kept.

Hauck [10] presents an approach where scheduling is performed by solving a series of assign-
ment problems based on integer equations that consider the actions of each truck at discrete
time steps, and recent average travel and loading times. The system attempts in real-time to
minimise shovel idle time and time spent with trucks travelling or waiting.

Soumis et al. [17, 16] produce an operational plan by solving a non-linear program that
considers blending requirements, waiting times derived from queuing theory, and availability
of trucks. Dispatching produces a temporary schedule by solving an assignment problem that
minimises deviation from the plan, and considers probability distributions of expected waiting
times at each shovel. No mathematical formulations are presented.

White and Olsen [24] and White et al. [25] present DISPATCH, a plan-driven approach. In
the offline stage, an operational plan, specifying the desired haulage rates along available routes,
is produced by solving two LPs which consider shovel and crusher rates, grade requirements and
network constraints. In the online stage, routing uses temporary schedules, created by ordering
shovels by a neediness function that considers haulage rates and travel times, and assigning
trucks to minimise a lost-tons function that considers truck and shovel idle times.

Li [11] produces an operational plan that optimises truck flow along available paths by
solving an LP based on travel times and predetermined ore requirements. Dispatching greedily
chooses the shovel with the highest ratio between the time since its last dispatch and the optimal

94



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

inter-arrival times determined by the LP. It ignores the current state of the mine, thus it does
not compensate for potential queues.

Bonates [7] presents some variations on the common greedy heuristics.
Temeng et al. [23] produce an operational plan that optimises production rates along avail-

able routes by solving a goal-programming model. Dispatching produces a temporary schedule
that attempts to minimise total waiting time while considering shovel demand, based on how
far behind schedule each shovel is.

Bissiri [6] applies an agent-based system inspired by a social insect model. Shovels bid for
trucks, which are reassigned if demand exceeds a threshold value based on its capacity, remaining
distance to its current assignment, its previous assignment, and current road conditions.

Ta [21] and Ta et al. [19] apply stochastic programming to produce a fixed truck assign-
ment. Their model minimises the resources required to satisfy ore demand subject to operating
constraints, to a specified probability.

Bastos [4] and Bastos et al. [3] apply Time-Dependent Markov Decision Processes (TiMDP)
to model the stochastic behaviour of a mine. A single-dependent-agent approach is applied to
reduce the size of the solution space and solve for a dispatching policy on the reduced TiMDP.
In [4] the TiMDP is combined with a GA.

Ta et al. [20] uses queueing theory to produce a fixed truck assignment. They solve an
LP which minimises the number of trucks required to achieve a given total shovel throughput
subject to blending constraints, where throughput is estimated using queueing theory concepts.

Subtil et al. [18] describe a brute-force approach used in SmartMine that runs an exhaustive
search over upcoming decisions. The size of the search space is not specified.

Underground mines add further complexity and constraints including one way roads, re-
duced communication between vehicles and limited awareness of vehicle locations [15] making
traditional scheduling techniques unviable.

3 Approach

3.1 Simulation Model

To compare dispatching algorithms, a simulator was designed around a model of a mine site
based on a network of timed automata (TA). TA are finite state automata extended with a set
of real-valued clocks [2]. Transitions between states can be dependent on the values of these
clocks. A simplified example of a TA representing a truck is shown in Figure 1. In the simple
case the truck moves through the mine in a travel-queue-fill-travel-queue-empty cycle. In the
model, when a truck enters a timed state (i.e. travelling, filling, emptying), the total time it
will spend in that state is restricted to a fixed range. In the simulator, upon entering these
states the transition time to the next state is randomly generated from a uniform distribution.
This is used to model the variations that occur in a real-world system.

The simulator is event-based, where each event represents a change in state for either a
truck or a traffic light, and the current shift-time in the simulation is advanced accordingly.
Additionally, for any point in time, each truck can be assigned an effective position in the mine
represented as a state-value pair. When filling or emptying, the value reflects the portion of the
service that has been completed; when travelling, the value reflects the position of the truck on
a road, calculated by assuming an initial constant speed then considering potential slowdowns
if catching up to slower trucks on that road, as overtaking is not allowed. These state-value
pairs alone cannot be used to determine future transition times, but can be used to initialise a
separate simulation for estimating the heuristic values used by the greedy algorithms.

95



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

WAITING
TRAVEL

TO SHOVEL

APPROACHING
SHOVEL

dest=instruction(),

x:=0

(minTravelTime[dest] ≤ x ≤ maxTravelTime[dest])?
arrive at shovel,

(queue empty)?,
enqueue

shovel free,

x:=0

leave shovel,
(minFillTime[dest] ≤ x ≤ maxFillTime[dest])?,

arrive at crusher,
(minTravelTime[dest] ≤ x ≤ maxTravelTime[dest])?

x:=0

x:=0

enqueue

(queue empty)?,

x:=0

crusher free,

x:=0

leave crusher,
(minEmptyTime ≤ x ≤ maxEmptyTime)?

WAITING
AT SHOVEL

FILLING

TRAVEL TO
CRUSHER

APPROACHING
CRUSHER

WAITING AT
CRUSHER

EMPTYING

Figure 1: A simplified example of a TA model of a mine truck, with one clock x. Certain
transitions can only be taken when x lies within a specific range. Not included in this example
are traffic lights, routes comprising multiple roads, and multiple crushers.

3.2 Genetic Algorithm

We applied a GA to evolve a controller for making dispatching decisions. The controller is a
set of cyclic finite automata, each equivalent to a list of destinations which the controller cycles
through. Each dispatching location (where more than one outgoing destination is possible) has
its own cycle. The GA optimises the controller for a given mine instance and a fixed number
of trucks. This is an offline algorithm; controllers are produced for entire shifts by running the
GA beforehand, rather than making real-time short-term decisions.

Constructing a GA requires a definition of the chromosome genotype, specifically how so-
lutions are represented; a fitness function for evaluating chromosomes; genetic operators for
producing new chromosomes from existing ones, such as crossover and mutation; and a selec-
tion scheme, for determining which chromosomes survive and reproduce based on their fitness.

In our GA, a chromosome is represented by n variable-length integer strings, for n dispatch-
ing locations. For example, consider a mine with 2 crushers and 3 shovels. Each chromosome
would have 5 integer strings: one possibility would be [[0, 0, 0, 1], [0, 1, 2], [0], [1], [0, 1]]. Here the
first crusher repeats the pattern [0, 0, 0, 1], dispatching to the first shovel 3 times, then to the
second shovel once. This occurs independently of the second crusher, which repeats the pattern
[0, 1, 2], dispatching once to each shovel. The last 3 strings are used by the shovels. The first 2
each exclusively dispatch to 1 crusher, while the third alternates between the crushers.

The fitness function uses the simulator to run a stochastic simulation of the mine, given a
fixed number of trucks and using the provided controller for dispatching decisions, and outputs
the number of truckloads emptied at the crushers in a shift. Because of the noisy fitness
function, the fitness of a chromosome is the average of multiple fitness evaluations. Evaluations
are stored in a bucket and a new evaluation is performed for each surviving chromosome in
each generation, with the oldest evaluation discarded from the bucket.

Crossover combines two chromosomes by crossing each pair of strings independently. Pairs of

96



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

strings are crossed by randomly choosing a single crossover point on each string then swapping
values past those points. The portion taken from each string can be of any length, producing
child strings with different lengths to their parents. Four different forms of mutation can occur.
Value mutation replaces one element in one string with a random value; Insertion inserts a
random value into one string; Deletion deletes one element from one string; Inversion reverses
a random portion of one string.

Reproduction selection is uniform from the population. Survival selection is partially by
elitism, and the remaining selection is by tournament selection with a tournament size of 4,
with candidates chosen from the pool of both parents and offspring. Tournament selection
selects a candidate by comparing t random members of the selection pool, for tournament size
t, and returning the candidate with the best fitness [12].

Parameters for the GA were chosen based on early experimentation. The crossover rate was
set to 0.9, and each form of mutation occurs independently with a rate of 0.05. The elitism
rate was set to 0.1. Each run of the GA was 500 generations. 100 chromosomes survive each
generation, and 200 new offspring are produced each generation. The fitness bucket size is 20.

4 Results and Discussion

4.1 Experimental Methodology

Testing was performed in a discrete event simulator, as described in Section 3.1, implemented
in Java. Code used for this paper is publicly available [8]. All trucks have the same speed
distribution and each truckload is the same size. Crushers and shovels are heterogeneous; their
average servicing rates vary from machine to machine. All trucks start the shift empty at a
crusher. Full trucks have 20% greater travel times than empty trucks. Overtaking is banned.

Three types of problems were considered, with different amounts of equipment and different
road types joining them. The basis for these different problem types is simply to test the ability
of each algorithm to adapt to added complexities. Examples of the three road networks are
shown in Figure 2.

Problem 1 has 4 shovels and 1 crusher, and each shovel has one distinct two-lane road to the
crusher. Problem 2 has 6 shovels and 2 crushers, and each shovel-crusher pair is joined by one
distinct two-lane road. Problem 3 has 6 shovels and 2 crushers, and each shovel-crusher pair is
joined by one distinct route with a two-lane road connected to the crusher joined to a one-lane
road connected to the shovel. One-lane roads can be traversed in both directions, managed
by traffic lights that respond to arrivals; a green light means that no trucks are travelling or
waiting in the opposite direction.

In Problems 2 and 3, the crushers are not next to each other; shovels close to one crusher
are far from the other and within each instance the average travel time between crushers is
similar across routes (ignoring service and waiting times).

Six instances of each problem were randomly generated, with different service rates for each
machine, different travel times for each route, and in Problem 3 different two-lane to one-lane
ratios for each route. The average emptying rate was set to 1/3 (trucks per minute) and the
total filling rate for all shovels is equal to the total emptying rate for all crushers.

4.2 Previous Algorithms

The GA approach was compared with the greedy heuristics MTCT, MTWT, MTST, and
MSWT, as well as DISPATCH [24, 25], due to its status in the industry. Each of these previous

97



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

C

bc
bc
bc bcS

S

S

S

(a) Problem 1. 1 crusher (C) and 4 shovels (S).

bc

bc

bcbcbc
bc

C

C

S

S

S

S

S

S

(b) Problem 2. 2 crushers (C) and 6 shovels (S).

One-lane road

Two-lane road

bc

bc

bc
bc

bc
bc

C

C S

S

S

S

S

S

(c) Problem 3. 2 crushers (C) and 6 shovels (S). Each route consists of a two-lane road connected to a
crusher that narrows to a one-lane road connected to a shovel.

Figure 2: Example road networks for each test problem.

algorithms are online algorithms. Other algorithms considered from the literature either per-
formed poorly in early experiments, were unsuitable for our problem specifications, or lacked
sufficient detail for a suitable implementation. Each algorithm used in testing was implemented
in Java by the authors. LPs were solved with the lpsolve library [5]. Some adaptations were
necessary to fit the algorithms to our problem specification, which are described below.

4.2.1 Greedy Heuristics

We implemented the greedy algorithms to calculate their heuristic values by performing 20
stochastic forward simulations, considering the current locations of all trucks in the mine. In
multi-crusher problems, a pair of dispatches is produced; the first is the route to a shovel which
is used immediately, and the second is the return route which is stored. MTCT evaluates each
pair of possible routes. MTWT, MTST, and MSWT first find the route that best satisfies their
heuristic, then given that choice find the return route that best satisfies that heuristic (e.g.
MTST finds the shovel that will service the truck soonest, then given that assignment finds the
crusher that will service that truck soonest). The concept of a shovel being available soonest

98



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

makes less sense in a multi-crusher problem, so in Problems 2 and 3 MSWT finds the shovel
with the expected earliest time window when a truck can be serviced.

4.2.2 DISPATCH

DISPATCH relies on linear programming to determine the desired flow for each route. The orig-
inal LPs described attempt to minimise costs and trucks while satisfying production demand,
and feature constraints not relevant to our problem specification such as blending constraints.
We have used a similar LP, detailed in Appendix A, which discards unused constraints and
attempts to maximise production given a preset fixed number of trucks.

This approach has issues on Problem 3 however, because both the LP and dispatcher require
an estimate of the expected time to traverse each route. The expected time to clear a one-lane
road includes the expected waiting time at traffic lights, which depends on the flow in both
directions. Through simulations it was observed that, if the flow F in both directions on a
one-lane road is equal, then the expected waiting time is equal to the mean travel time T if

F > 1
2T , otherwise it can be approximated as FT 2

2 (except when F is very close to 1
2T ). To

adapt DISPATCH to Problem 3, the LP and dispatcher estimate the expected waiting time of
one-lane roads using this approximation where F is set as the filling rate of the shovel that road
feeds. This is based on the assumption that most of the flow to and from a shovel is from a
single crusher, based on observing this on Problem 2, and thus the assigned flow on any route
to a shovel is expected to be usually either 0 or the filling rate, and equal in both directions.

4.3 Results

The dispatching algorithms were compared on multiple instances of each problem. Figures 3-5
show for typical instances the average production of a 500 minute shift, measured in complete
truckloads returned to the crushers by shift end, against the number of trucks available. Each
data point is the average of 50 shifts. Results for the heuristics show an algorithm portfolio
[9] of the 4 heuristics, showing the best performing heuristic at each given number of trucks,
henceforth referred to as Best-H. Results for the GA show the 90th percentile of 20 runs (i.e.
the 3rd best run) for each number of trucks; this percentile is used in further discussion. Due
to their stochastic nature, it is common to run GAs multiple times to get better results, which
is quite practical since the GA is run offline. The 90th percentile was chosen, as opposed to
the absolute best solutions, to demonstrate reliability. Standard deviations for each line are
typically small (often less than 1, usually less than 2 truckloads), and thus are not shown.

4.3.1 Problem 1

Performance on Problem 1 is shown in Figure 3. The GA easily performs as well as the best-
performing algorithm for any number of trucks, consistently converging to a solution of the
same quality. The low complexity means the problems are easily solved, even with noise.

DISPATCH performs well, except in instances where one shovel is much farther from the
crusher than the others and the system is undertrucked. In these cases, DISPATCH favours
the distant shovel too much and performance suffers, as observed in Figure 3b. The original
algorithm featured a step to decide how many trucks to use, thus the real-time dispatcher is
not designed to operate on undertrucked systems, even if the flow is adjusted to compensate
for having fewer trucks available as it is here. However, DISPATCH still reaches its optimal
production level in the same number of trucks as the GA.

99



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

5 10 15 20 25
Number of Trucks

40

60

80

100

120

140

160

T
ru

ck
lo

a
d
s 

R
e
tu

rn
e
d
 P

e
r 

S
h
if
t

GA
DISPATCH
Best-H

(a) Instance 2

5 10 15 20 25
Number of Trucks

40

60

80

100

120

140

160

T
ru

ck
lo

a
d
s 

R
e
tu

rn
e
d
 P

e
r 

S
h
if
t

GA
DISPATCH
Best-H

(b) Instance 6

Figure 3: Comparison of dispatching algorithms on typical instances of Problem 1. Plotted is
the average number of truckloads returned to the crusher per shift against the number of trucks
available.

On typical instances, MTWT reaches the optimal production level with the fewest trucks,
compared to the other heuristics, but performs poorly on undertrucked systems. Best-H reaches
optimal production with the same number of trucks as the GA, but for undertrucked systems
is outperformed by as much as 4%.

4.3.2 Problem 2

Performance on Problem 2 is shown in Figure 4. The GA is slightly outperformed (by as much
as 3%) for saturated networks by DISPATCH. This indicates that for this kind of problem,
simple cyclic automata that do not respond to disruptions from noise are insufficient.

The relative order of the performance of the other algorithms differs from Problem 1. MTST
now typically reaches the optimal production level with the fewest trucks, compared to the other
heuristics. DISPATCH still performs as well as or better than Best-H on saturated systems.

100



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

15 20 25 30 35
Number of Trucks

180

200

220

240

260

280

300

320

T
ru

ck
lo

a
d
s 

R
e
tu

rn
e
d
 P

e
r 

S
h
if
t

GA
DISPATCH
Best-H

(a) Instance 3

15 20 25 30 35
Number of Trucks

180

200

220

240

260

280

300

320

T
ru

ck
lo

a
d
s 

R
e
tu

rn
e
d
 P

e
r 

S
h
if
t

GA
DISPATCH
Best-H

(b) Instance 5

Figure 4: Comparison of dispatching algorithms on typical instances of Problem 2. Plotted
is the average number of truckloads returned to the crushers per shift against the number of
trucks available.

4.3.3 Problem 3

Performance on Problem 3 is shown in Figure 5. Table 1 shows the minimum number of trucks
required for Best-H, DISPATCH, and the GA to achieve over 95%, 98%, and 99% of the optimal
performance observed on each instance of Problem 3. The GA achieves high performance with
fewer trucks than the other algorithms, except on Instance 6, indicating it is suitable as a cost-
saving measure. In most cases, the heuristics cannot achieve above 99% of the peak performance
with any number of trucks.

The best performing heuristic, for reasonable numbers of trucks, varies between MTST and
MTWT. While MTST already performed well on Problem 2, MTWT likely performs well in
cases where the need to minimise contention on one-lane roads outweighs considerations of
travel times.

DISPATCH performs poorly when the system is undertrucked. This is likely due to the fact

101



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

20 25 30 35 40
Number of Trucks

200

220

240

260

280

300

320

T
ru

ck
lo

a
d
s 

R
e
tu

rn
e
d
 P

e
r 

S
h
if
t

GA
DISPATCH
Best-H

(a) Instance 1

20 25 30 35 40
Number of Trucks

200

220

240

260

280

300

320

T
ru

ck
lo

a
d
s 

R
e
tu

rn
e
d
 P

e
r 

S
h
if
t

GA
DISPATCH
Best-H

(b) Instance 2

Figure 5: Comparison of dispatching algorithms on typical instances of Problem 3. Plotted
is the average number of truckloads returned to the crushers per shift against the number of
trucks available.

Table 1: The minimum number of trucks required to achieve at least 95%, 98%, and 99% of
the peak performance on 6 instances of Problem 3. Compared are Best-H (B-H), DISPATCH
(D), and the 90th percentile for the GA (GA-90). Cells marked as unl. indicate the algorithm
cannot achieve this performance with any number of trucks.

95% 98% 99%
Instance B-H D GA-90 B-H D GA-90 B-H D GA-90

1 29 33 26 34 34 29 39 37 32
2 31 33 28 35 37 34 unl. 43 38
3 32 33 30 36 37 34 unl. 39 38
4 33 36 28 38 39 31 unl. unl. 34
5 41 43 32 48 47 42 unl. unl. 45
6 27 26 24 30 28 28 32 29 31

102



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

C
1
 -

 S
1

C
1
 -

 S
2

C
1
 -

 S
3

C
1
 -

 S
4

C
1
 -

 S
5

C
1
 -

 S
6

C
2
 -

 S
1

C
2
 -

 S
2

C
2
 -

 S
3

C
2
 -

 S
4

C
2
 -

 S
5

C
2
 -

 S
6

0

200

400

600

800

1000

W
a
it

in
g
 a

t 
lig

h
ts

 p
e
r 

sh
if
t 

(t
ru

ck
-m

in
u
te

s)

MTST

DISPATCH

GA

Figure 6: Comparison of productivity loss between MTST, DISPATCH, and the best GA
solution (of 20 runs) on Instance 4 of Problem 3 with 31 trucks. Productivity loss is measured
in truck-minutes spent waiting at traffic lights for each one-lane road in both directions, averaged
over multiple shifts. Ci-Sj refers to the route between crusher i and shovel j.

that in these cases some shovels are under-utilised, thus the expected waiting times on one-lane
roads are less accurate.

4.3.4 Discussion

Figure 6 demonstrates the effects of contention on the one-lane roads, by showing the average
truck-minutes spent waiting at each one-lane road per shift. MTST, DISPATCH, and the best
performing solution of 20 runs of the GA are compared here on instance 4 of Problem 3. The
number of trucks was set to 31, sufficient for the GA to achieve over 98% of peak performance
as shown in Table 1. On the same instance with the same solutions, Figure 7 compares the
utilisation of each machine, by showing the percentage difference between the arrival rate at
each machine and the service rates, for the final three quarters of the shift. Values close to zero
indicate high utilisation of that machine.

The GA manages to match the service rates within 5% for 5 shovels and both crushers.
MTST however, only achieves within 5% on 3 shovels and 1 crusher. This shows that for this
number of trucks, MTST can only utilise some of the machines well. MTST demonstrates a
much higher total loss in truck use due to contention than the GA. Other instances are similar,
with MTST showing higher total loss in truck use due to contention, and at least one shovel and
crusher showing poor utilisation. MTWT is relatively better than MTST at avoiding waiting
times on one-lane roads, but still shows a higher total loss in truck use than the GA.

On all instances, DISPATCH is observed to have significant productivity loss on at least 2
roads, and shovels that are significantly underutilitised are connected to roads with minimal
productivity loss. This is attributed to an issue also observed in Problem 1, which is that the
dispatching algorithm favours much longer routes, and the underused roads in this case are also
the shortest routes. This issue is amplified by the approximation of waiting times on one-lane
roads, which is much higher on the longer roads. Thus DISPATCH tends to require more trucks

103



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

S1 S2 S3 S4 S5 S6 C1 C2

40

30

20

10

0

P
e
rc

e
n
ta

g
e
 d

if
fe

re
n
ce

 b
e
tw

e
e
n
 a

rr
iv

a
l 
a
n
d
 s

e
rv

ic
e
 r

a
te

s

MTST

DISPATCH

GA

Figure 7: Comparison of shovel and crusher utilisation between MTST, DISPATCH, and the
best GA solution (of 20 runs) on Instance 4 of Problem 3 with 31 trucks. Utilisation is measured
by the percentage difference between the arrival and service rates, after the first shift-quarter,
averaged over multiple shifts.

to satisfy a mine on Problem 3.
The greedy algorithms cannot coordinate trucks in the long-term to minimise contention,

even if they otherwise match the correct dispatching rates and favour shorter routes where
appropriate. The GA is able to find a balanced solution that can match the required dispatching
rates, while managing routes to minimise contention and travel times. On Problem 3, a global
solution is appropriate to manage contention, and a GA is a suitable approach to find it.

Because GAs operate with a black-box fitness function, they can solve a wide range of
problems. In this case, the GA-based approach is not limited to these specific problem types.
The simulation model, used for the fitness function, can be adapted to many different road
networks and problem configurations. The compared algorithms however, use heuristic values
which evidently do not adapt well to more complex problems.

5 Conclusion

We have used a genetic algorithm to evolve cyclic automata for dispatching trucks in mines.
Solutions found by the GA were compared with common greedy heuristics, as well as the
DISPATCH algorithm, on three problem types of varying complexity. On Problem 1, with only
one crusher, the GA easily constructed solutions that performed as well as the alternatives. On
Problem 2, with two crushers, the GA sometimes performed slightly worse than the alternatives
due to the inability of the cyclic automata to react to disruptions. On Problem 3, which
introduced one-lane roads, the GA was able to achieve high performance with fewer trucks than
the alternatives. The benefits it gained from producing a more global solution that reduced
contention outweighed issues caused by disruptions.

Future work will focus on real-time evolution of schedules, and on generalising the problem
to include blending constraints and issues specific to underground mines.

104



A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

References

[1] Stéphane Alarie and Michel Gamache. Overview of solution strategies used in truck dispatching
systems for open pit mines. International Journal of Surface Mining, Reclamation and Environ-
ment, 16(1):59–76, 2002.

[2] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science,
126(2):183–235, 1994.

[3] Guilherme S. Bastos, Luiz E. Souza, Fabio T. Ramos, and Carlos H. C. Ribeiro. A single-dependent
agent approach for stochastic time-dependent truck dispatching in open-pit mining. In 2011 14th
International IEEE Conference on Intelligent Transportation Systems (ITSC), pages 1057–1062.
IEEE, 2011.

[4] Guilherme Sousa Bastos. Methods for Truck Dispatching in Open-pit Mining. PhD thesis, Aero-
nautics Institute of Technology, São José dos Campos, 2010.

[5] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. lpsolve. https://sourceforge.net/

projects/lpsolve/, 2006–2016.

[6] Yassiah Bissiri. Application of agent-based modeling to truck-shovel dispatching systems in open
pit mines. PhD thesis, University of British Columbia, 2002.

[7] Eduardo Jorge Lira Bonates. The development of assignment procedures for semi-automated truck-
/shovel systems. PhD thesis, McGill University, 1992.

[8] Wesley Cox, Lyndon While, Tim French, and Mark Reynolds. GA-TA truck dispatching. https:

//github.com/wesleycox/GA-TA-Truck-Dispatching, 2017.

[9] Carla P Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence, 126(1-2):43–62,
2001.

[10] Robert F. Hauck. Computer-controlled truck dispatching in open-pit mines. In Computer methods
for the 80’s in the mineral industry, pages 739–742. AIME Calgary, 1979.

[11] Z. Li. A methodology for the optimum control of shovel and truck operations in open-pit mining.
Mining Science and Technology, 10(3):337–340, 1990.

[12] Brad L Miller and David E Goldberg. Genetic algorithms, tournament selection, and the effects
of noise. Complex systems, 9(3):193–212, 1995.

[13] Modular Mining Systems. Dispatch fleet management. http://www.modularmining.com/product/
dispatch/, 2017. Accessed: 2017-01-13.

[14] Mohan Munirathinam and Jon C. Yingling. A review of computer-based truck dispatching strate-
gies for surface mining operations. International Journal of Surface Mining, Reclamation and
Environment, 8(1):1–15, 1994.

[15] Zhen Song, H̊akan Schunnesson, Mikael Rinne, and John Sturgul. Intelligent scheduling for un-
derground mobile mining equipment. PloS one, 10(6):e0131003, 2015.

[16] F. Soumis, J. Ethier, and J. Elbrond. Evaluation of the new truck dispatching in the mount wright
mine. Application of Computers and Operations Research in the Mineral Industry, pages 674–682,
1989.

[17] F. Soumis, J. Ethier, D. McInnis, and J. Elbrond. A new method for automatic truck dispatching
in an open pit mine. Ecole Polytechnique de Montreal, 1986.

[18] Robert F. Subtil, Diego M. Silva, and Julio Cesar Alves. A practical approach to truck dispatch
for open pit mines. In 35th APCOM symposium, pages 24–30, 2011.

[19] C. H. Ta, J. V. Kresta, J. F. Forbes, and H. J. Marquez. A stochastic optimization approach
to mine truck allocation. International journal of surface mining, reclamation and environment,
19(3):162–175, 2005.

[20] Chung H. Ta, Armann Ingolfsson, and John Doucette. Haul truck allocation via queueing theory.
European Journal of Operational Research, 231(3):770–778, 2010.

[21] Chung Huu Ta. Optimal haul truck allocation in the syncrude mine. PhD thesis, University of

105

https://sourceforge.net/projects/lpsolve/
https://sourceforge.net/projects/lpsolve/
https://github.com/wesleycox/GA-TA-Truck-Dispatching
https://github.com/wesleycox/GA-TA-Truck-Dispatching
http://www.modularmining.com/product/dispatch/
http://www.modularmining.com/product/dispatch/


A Genetic Algorithm for Truck Dispatching in Mining Cox, French, Reynolds, and While

Alberta, 2002.

[22] Sizhe Tan and R. V. Ramani. Evaluation of computer truck dispatching criteria. In Proceedings
of the SME/AIME annual meeting and exhibition, Arizona, pages 192–215, 1992.

[23] Victor A. Temeng, Francis O. Otuonye, and James O. Frendewey Jr. Real-time truck dispatching
using a transportation algorithm. International Journal of Surface Mining, Reclamation and
Environment, 11(4):203–207, 1997.

[24] J. W. White and J. P. Olson. Computer-based dispatching in mines with concurrent operating
objectives. Min. Eng.(Littleton, Colo.);(United States), 38(11), 1986.

[25] J. Wm. White, J. P. Olson, and S. I. Vohnout. On improving truck/shovel productivity in open
pit mines. CIM bulletin, 86:43–43, 1993.

[26] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.

A Adapted LP for DISPATCH

max

Nc∑
i=1

MCi − T

s.t. Ci ≤ Cri, 1 ≤ i ≤ Nc

Ci =

Ns∑
j=1

−→
F i,j =

Ns∑
j=1

←−
F i,j , 1 ≤ i ≤ Nc

Sj ≤ Srj , 1 ≤ j ≤ Ns

Sj =

Nc∑
i=1

−→
F i,j =

Nc∑
i=1

←−
F i,j , 1 ≤ j ≤ Ns

T =

Nc∑
i=1

Ci

Cri
+

Ns∑
j=1

Sj

Srj
+

Nc∑
i=1

Ns∑
j=1

(Ri,j
−→
F i,j + Ri,jFp

←−
F i,j)

T ≤ Nt

for (Ci, Sj) total truck flow through (crusher i, shovel j) (trucks/min) [to be determined]

(Cri, Srj) (crusher i, shovel j) service rate (trucks/min) [specified]
−→
F i,j truck flow from crusher i to shovel j (trucks/min) [to be determined]
←−
F i,j truck flow from shovel j to crusher i (trucks/min) [to be determined]

Ri,j expected route clear time between crusher i and shovel j (min) [specified]

Fp full truck speed penalty [specified]

(Nc,Ns) number of (crushers, shovels) [specified]

Nt maximum number of trucks available [specified]

T estimated number of trucks to satisfy total system flow [to be determined]

M large constant

106


	Introduction
	Previous Work
	Approach
	Simulation Model
	Genetic Algorithm

	Results and Discussion
	Experimental Methodology
	Previous Algorithms
	Greedy Heuristics
	DISPATCH

	Results
	Problem 1
	Problem 2
	Problem 3
	Discussion


	Conclusion
	Adapted LP for DISPATCH

